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Abstract

The Internet of Things (IoT) is a new paradigm that connects physical and

virtual objects from various domains such as home automation, industrial

processes, human health, and monitoring. IoT sensors receive information

from their environment and forward it to their neighboring nodes. However,

the large amounts of exchanged data are vulnerable to attacks that reduce the

network performance. Most of the previous security methods for IoT have

neglected the energy consumption of IoT, thereby affecting the performance

and reducing the network lifetime. This paper presents a new multistep

routing protocol based on cellular learning automata. The network lifetime is

improved by a performance-based adaptive reward and fine parameters. Nodes

can vote on the reliability of their neighbors, achieving network reliability and

a reasonable level of security. Overall, the proposed method balances the

security and reliability with the energy consumption of the network.
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1 | INTRODUCTION

The Internet of Things (IoT) is a new concept in technol-
ogy and communication [1]. IoT has emerged as a
groundbreaking platform on which any human, animal,
or object can send information through communication
channels such as the internet or intranet [2,3]. IoT
connects all objects and devices to a virtual world [4]
with all-digital tools. This paradigm is both advantageous
and disadvantageous [5,6]. “Internet of Things,” a term
coined by Kevin Ashton in 1999 [7], can generate,
analyze, and make decisions about connected objects;
accordingly, it has received much attention in recent

years and is projected to connect up to 100 billion devices
by 2025 [8].

IoT integrates the physical and internet objects from
various fields such as home automation, industrial pro-
cesses, human health, and environmental monitoring [9].
It also connects the devices used in daily living to the
internet. Protecting the vast numbers of IoT devices from
threats is among the biggest challenges of technology-
based companies. IoT sensors receive information from
their environment and forward it to their neighboring
nodes. Attacks such as Denial-of-Services (DoS), closed-
loop attacks, and black hole and worm attacks disrupt
the routing process and reduce the network performance
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[9]. Therefore, secure and reliable IoT routing is funda-
mental to the smooth running of IoT. Intrusion detection
systems (IDSs) that usually form part of other security
systems or software have now been applied to informa-
tion systems. IDS security and authorized access control
mechanisms provide a double line of defense against
intrusion [10,11]. An IDS aims to automate the protec-
tion of information systems [12]. Although IDS is widely
used in network security and has been extensively devel-
oped in recent years, intrusion detection technology
remains incomplete and far from ideal [13].

For peer-to-peer communications between machines,
sensors, and hardware, IoT relies on IP-based networks
to send the data collected from connected devices to gate-
ways, cloud platforms, or middleware. IoT is a growing
part of future 5G networks providing free access and new
services to users and businesses [14]. However, as the
resources of front-end IoT devices are limited, many
security mechanisms cannot protect IoT networks. When
encryption fails, an IDS efficiently prevents intrusion and
enforces the security of IoT networks [15]. IDSs have
played a pivotal role in protecting networks and informa-
tion systems for more than two decades [16]. Neverthe-
less, the particular characteristics of IoT, such as
constrained-resource devices, specific protocol stacks,
and standards [17], are not always well handled by tradi-
tional IDS techniques.

The network nodes in most applications face security
challenges. Such challenges must be met with innovative
methods that establish a secure information-exchange
environment. Advanced learning techniques are antici-
pated to tackle the existing and anticipated security and
privacy issues of IoT [18]. Each IoT sensor collects infor-
mation from the environment and sends its collected data
to the central node. Along with security, quality of service
is a fundamental requirement of IoT. The quality of IoT
services is evaluated by various parameters, such as the
transmission range of nodes, the optimal number of
active nodes, the network lifetime, and energy consump-
tion of the network [12]. IoT sensors are cheap, inexpen-
sive, and low power consumers. However, many IoT
applications must run on batteries in an alienated envi-
ronment for many years, and the overall energy con-
sumption is reduced to improve the performance.
Therefore, a power-efficient solution with high efficiency
and extended lifetime is highly demanded [19].

In this paper, the quality of IoT service is improved
by an intelligent method that deploys cellular learning
automata (CLA) [20]. This new multistep routing proto-
col based on CLA is intended to improve the security and
reliability of IoT. Most of the above methods provide pro-
tection while ignoring the energy consumption. Incorpo-
rating the energy consumption would maintain the

performance and extend the lifetime of the network. This
paper aims to resolve these limitations while achieving
an appropriate security level. The new protocol is both
energy conscious and energy efficient and establishes a
proper balance between the network reliability and
energy consumption criteria. To achieve this balance, the
CLA finds the most suitable radio board for each node
while considering the network’s energy consumption.

By creating a CLA for each node in the network,
applying the load distribution technique, and optimizing
the use of all nodes, we try to balance the energy con-
sumptions of the nodes and ultimately increase the net-
work lifetime. First, the statistical parameters are
calculated for each node. Communications within the
network are then established based on the neighbors’
reliability levels, which are calculated at each node. Our
proposed protocol includes three phases: (1) topology
management, (2) route identification, and (3) traffic dis-
tribution and route maintenance. The first phase selects
the best transmission range for all nodes. The second
phase creates a routing table for each node and identifies
all individual paths between each source–destination
node pair. Our intrusion detection method uses learning
automata with adaptive reward or penalty parameters.
Whether a route is rewarded or penalized depends on the
comprehensive communication quality of the nodes.
The third phase prevents premature death by distributing
the traffic to all nodes in the network. If there is no active
route between the source and destination, multiple paths
are re-identified after the failure of the initial routes. In
the CLA with adaptive parameters, the nodes vote on the
reliability of their neighbors. The comprehensive commu-
nication quality reflects the forwarding behaviors of
nodes. The main contributions of this article are summa-
rized below.

• We improve the security and reliability of IoT net-
works by a new multistep routing protocol based on
CLA. The protocol establishes a proper balance
between the two essential criteria of IoT: network reli-
ability and energy consumption.

• We create a CLA for every node in the network and
employ the adaptive reward and penalty technique to
balance the energy consumption of the nodes and ulti-
mately increase the network’s lifetime.

• We calculate the reliability levels of nodes based on
the communication quality. The nodes then vote on
their neighbors’ reliability. Based on these reliability
levels, we establish a communication in the network.

• We simulate the network simulation and collect infor-
mation on the network status. The effectiveness of the
proposed method is compared with those of two well-
established previous studies.
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2 | RELATED WORKS

Pajouh et al. [21] studied intrusion detection in an IoT
case study of wireless sensor networks. IDSs can detect
any unauthorized use of the system causing abuse or
harm by internal and external users. For this purpose,
they employed a k-nearest neighbor classification algo-
rithm. Nearest neighbor optimization finds and catego-
rizes the nearest points in metric spaces.

Rani et al. [22] introduced a method that assesses
trust in the IoT environment and access control. The
trust was evaluated using game theory and related tech-
niques. A trust model for IoT was built by mapping the
trust assessment and controlling access to game concepts
and players. For accurate measurements of trust level,
the authors defined a profit function based on perfor-
mance goals such as energy consumption and data trans-
fer rate. After presenting a system model that examines
trust in various high trust, moderate trust, and low trust
cases, the authors concluded that e-commerce in the IoT
network can help to increase trust.

Nguyen et al. [23] presented DIoT, an autonomous
self-learning distributed system that detects compromised
IoT devices. DIoT builds effectively on device-type-
specific communication profiles without any human
intervention or labeled data. Subsequently, the system
detects abnormal deviations in the devices’ communica-
tion behavior, which may be caused by malicious adver-
saries. Furthermore, DIoT utilizes a federated learning
approach for efficient aggregation of behavior profiles.
This system was the first to employ a federated learning
approach to anomaly-detection-based intrusion detection.
Consequently, DIoT can cope with upcoming and
unknown attacks.

A selective forwarding attack detection method was
proposed in [24]. This method uses adaptive learning
automata and communication quality to distinguish
malicious packet dropping from normal packet loss. The
method eliminates the impact of normal packet loss on
selective forwarding attack detection. It also detects both
ordinary and special cases of selective forwarding attacks.
The nodes’ current comprehensive communication quali-
ties reflect their short- and long-term forwarding behav-
iors. The method accounts for normal packet loss caused
by unstable channels and medium-access-control layer
collisions. The adaptive reward and penalty parameters
of the detection learning automata are determined by the
comprehensive communication quality of the node and
the nodes’ votes on the reliability of their neighbors.
Normal nodes are rewarded and malicious ones are
punished.

Data routing in the IoT network is a particularly wor-
rying security problem. Large-scale data exchange

between devices is an easy target for attackers. Under
such an attack, the data paths are compromised.
Airehrour et al. [25] provided a secure routing communi-
cation framework called SecTrust, a framework on which
trust between the nodes in IoT can be calculated,
assessed, and built. The SecTrust framework creates a
direct connection between connected nodes. Each node
calculates the reliability of its immediate neighbors based
on the direct and recommended trust values. The neigh-
bors with high trust values are selected for safe routing,
whereas the low trust nodes are considered either as
malicious nodes or selfish nodes that conserve their
resources (such as battery power). SecTrust implements
five main processes: trust calculation, trust monitoring,
identification and separation of malicious nodes, trust
rating, and backup/recovery.

SecTrust tool is a promising framework for practical
IoT systems, as it detects and isolates malicious actors,
manages and maintains the trust and advisory systems in
IoT networks, and secures IoT routing using a trust-based
mechanism. The SecTrust system has shown more prom-
ising performance results than other trust-based systems.

The method presented in [26] analyzes the intrusion
detection requirements of IoT networks. A uniform intru-
sion detection method based on an automated model was
developed for large heterogeneous IoT networks. This
method automatically detects and reports potential IoT
attacks in three ways. Using an extension of labeled tran-
sition systems, it provides a consistent description of IoT
systems and detects intrusions by comparing the
abstracted action flows. Besides designing the intrusion
detection approach, Fu et al. [26] constructed Event data-
bases and implemented the Event Analyzer as an IDS.

Among the massive amount of data generated by the
surge of IoT devices, attacks or untrustworthy data are
nearly impossible to detect. In [27], a new hinge-
classification algorithm based on minibatch gradient
descent with an adaptive learning rate and momentum
(HCA-MBGDALRM) was designed to minimize the
effects of security attacks. Deep networks trained with
this algorithm significantly outperform traditional neural
networks, decision trees, and logistic regression in terms
of scale and speed. We have solved the data skew prob-
lem in the shuffle phase and implemented HCA-
MBGDALRM on a parallel framework that accelerates
the processing speed of massive traffic datasets.

Wu and Wang [28] developed a game-theoretical
analysis framework for collaborative security detection
that considers defender–attacker confrontations. First,
this framework analyzes the existence and uniqueness of
the Nash equilibrium in a game model with complete
consensus. The Nash equilibrium is then determined by
an iterative learning-based calculation method. Last but

DOGANI ET AL. 157



not least is a quantitative analysis of the relationship
between the Nash equilibria of the game models in com-
plete and incomplete consensus with infinite and finite
numbers of iterations.

Gu et al. [29] presented a reinforced learning-based
attack detection model that adapts to new characteristics
in IoT attacks by automatically learning and recognizing
transformations in the attack pattern. This method first
learns the crucial features of IoT traffic and detects both
high-rate and low-rate IoT attacks using entropy-based
metrics. Leveraging the reinforcement learning tech-
nique, it continuously adjusts the attack detection thresh-
old based on detection feedback, thereby optimizing both
the detection rate and the false alarm rate.

Adaptive hybrid IDS with a timed automata control-
ler [30] can overcome the challenges introduced by real-
time service changes. The hybrid IDS obtains additional
knowledge on frequent multimedia file formats and uses
this knowledge in a comprehensive analysis of packets
carrying multimedia files.

Deep learning (DL) is commonly used in big data
analysis and has attracted special interest as a cybersecu-
rity technique. With their self-teaching and compression
capabilities, DL architectures can discover hidden pat-
terns in the training data that discriminate attacks from
benign traffic. Diro and Chilamkurti [31] developed a
new DL cybersecurity approach that detects attacks on
the social IoT. The authors compared the performances
of the deep model and traditional machine learning and
competed distributed attack detection against the central-
ized detection system. Neural networks are popularly
employed in network intrusion detection. Because they
learn complex patterns and behaviors, they are expected
to differentiate between regular traffic and network
attacks. Rezvy et al. [32] detected intrusion and attacks in
5G and IoT networks using a deep auto-encoded dense
neural network algorithm. We evaluated this algorithm
on the benchmark dataset Aegean Wi-Fi Intrusion.
Hussain et al. [33] proposed a consolidated framework
based on deep convolutional neural networks trained on
real network datasets. Their framework enables early
detection of distributed denial-of-service (DDoS) attacks
orchestrated by a botnet that controls malicious devices.
Puppet devices individually perform silent calls, signal-
ing, short-message service (SMS) spamming, or a blend of
these attacks in targeted calls, internet messaging, SMS,
or a combination of these services, respectively, causing
coordinated DDoS attacks in a cell that can disrupt
cyber-physical systems operations. In evaluations, this
framework achieved a high standard and detected
attacked cells with high accuracy. In these studies, attack
detection in IoT was evaluated in terms of error detec-
tion, accuracy, and similar parameters.

Although these methods provide security, they do not
consider the energy consumption in the IoT network. As
energy consumption is a crucial factor in IoT and affects
the network performance, this article proposes the reduc-
tion of power consumption while improving the network
security and reliability. The proposed method attempts to
balance the two essential criteria of IoT: network reliabil-
ity and energy consumption.

3 | CELLULAR LEARNING
AUTOMATA

In this section, we briefly review the learning automata
and introduce the CLA [34]. A learning machine per-
forms a finite number of operations. Each selected action
is evaluated in a possible environment, and the evalua-
tion result is given to the automata as a positive or nega-
tive signal. This response influences the following action
selected by the automata [34]. Ultimately, the automata
attempt to learn the best action among all actions. The
best practice will maximize the likelihood of receiving a
reward from the environment. Figure 1 shows the inter-
action between the learning automata and their environ-
ment, and Table 1 outlines the notations used in this
paper.

The environment is represented by a triplet E�
α, β, Cf g in which α¼ α1, α2, …, αrf g is the set of envi-
ronmental inputs, β¼ β1, β2, …, βrf g is the set of environ-
mental outputs, and C¼ c1, c2, …, crf g is the set of
penalty probabilities [30]. The environment inputs one of
r selected automatic functions and outputs a response βi
to action i. If βi is a binary response, the environment is
called a Model P-type environment. In such an environ-
ment, undesirable (failed) and desired (successful)
responses are specified as βi nð Þ¼ 1 and βi nð Þ¼ 0, respec-
tively. In a Q-type environment βi nð Þ, the model can con-
tain a limited discrete number of values in the range
[0, 1], whereas in an S-type environment, the value of
βi nð Þ is a random variable in the range [0 and 1]. Mean-
while, ci is the probability of an adverse outcome of

F I GURE 1 Descriptive diagram of the cellular learning

automata
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action αi. In a static environment, the values of ci remain
unchanged; in a nonstatic environment, they change over
time [30].

Static automata are represented by a fixed structure
α, β, G, φf g in which α� α1, α2, …, αrf g is action set
of operations, β¼ β1, β2, …, βmf g is a set of inputs, and
φ¼ φ1, φ2, …, φsf g is the set of internal states. The new
state generation function is F �φ�β!φ and the output
function of the automata is G�φ! α. The function
G writes the current state of the automata to the next out-
put. A learning automata with a variable structure can be
represented by α, β, P, Tf g, where α� α1, α2, …, αrf g is a
set of operations, β� β1, β2, …, βmf g is a set of inputs,
P� P1, P2, …, Prf g is the vector of selection probabilities

for each operation, and P nþ1ð Þ�T α nð Þ,β nð Þ,P nð Þ½ � is
the automata learning algorithm. For example, in
the following linear learning algorithm, an action is
presumed to be selected in step n. The optimal response
from the environment is

Pi nþ1ð Þ¼Pi nð Þþα 1�Pi nð Þ½ �,
Pj nþ1ð Þ¼ 1�αð ÞPj nð Þ 8j j≠ i

: ð1Þ

An adverse response from the environment is

Pi nþ1ð Þ¼ 1�bð ÞPi nð Þ
Pj nþ1ð Þ¼ b

r�1
þ 1�αð ÞPj nð Þ 8j j≠ i

ð2Þ

In Equations (1) and (2), a and b are the adaptive reward
and penalty parameters, respectively. Depending on the
values of a and b, three states of the above relations are
possible. If b and a are equal, the learning automata are
denoted as LRP. If b is equal to the buffer, the learning
automata are denoted as LRP. If b≪a, the learning
automata are designated as LRIP.

CLA is a mathematical model for systems with simple
components. The behavior of each component is deter-
mined and modified according to the behaviors and past
experiences of its neighbors [31]. The simple components
of this model react and interact to yield complex behav-
iors typical of many problems. Each cell in the cellular
automata of one CLA is equipped with one or more
learning automata that determine the cell’s state. Like
cellular automata, the environment is governed by natu-
ral laws that determine whether the action chosen by the
automata in the cell should be rewarded or fined. The
structure of the CLA is adaptively rewarded and penal-
ized to achieve a specific goal. The developed CLA is a
random CLA that uses the learning automata to calculate
the state transfer in random cellular automata. CLAs can
be either asynchronous or synchronous. In a synchro-
nous model, all cells are synchronized with a global clock
and run simultaneously.

4 | PROPOSED METHOD

Using the CLA, our protocol increases the security of net-
work nodes and hence extends the life of the network.
Our proposed protocol is implemented in three phases:

1. Topology control (including two learning phases and
selection of the most suitable radio board for each
node)

TAB L E 1 Notations used in this paper

Notation Definition

α Set of CLA operations

β Set of CLA inputs

φ New state generation function

P Probability vector of operation selection in CLA

Pi nð Þ Response from the environment in step n of the
CLA

T Automata learning algorithm

a Adaptive reward parameter

b Adaptive penalty parameter

Ainc Increase value of radio range

Adec Decrease value of radio range

Rt Transmittance range

ELevelj Security level of neighboring node j

HopCounti Number of steps for sending information to
neighboring node i

Neighbor# Total number of neighboring nodes

ω Weight on two levels of security and the number
of step factors

Slevi, j tð Þ Security level of node i along path j at time t

AvgEnergyi Average energy of the first nodes of other routes
from node i to the destination

MaxHop Maximum number of links from the node
receiving the ACK packet to the destination

μ1 Minimum acceptable reward value

μ2 Minimum acceptable of penalty value

Qualityj Comprehensive quality of a neighboring node of
node j

agei Age factor of node i

jW j Window length

TRj Trust ratio

Abbreviation: CLA, cellular learning automata.
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2. Route identification
3. Traffic distribution and route maintenance

4.1 | Network definition

In the first phase, all nodes are assigned by the automata,
which randomly select an automaton operation (for
example, A1, A2, A3). The automata update the node
radio board by choosing an action and sending a help mes-
sage containing the sensor identification number to the
node neighbors. The number of responses to the signals
indicates the number of neighbors per node or the degree
of each node. In the next step of Phase 1, the selected
action is awarded by an adaptive penalty or reward based
on the number of responses received, and the radio board
is updated. Guided by the learning automata, the nodes
eventually choose the most suitable board. In the second
phase, routing tables are created for each node, and all sep-
arate paths between each source–destination node pair are
identified. In this way, the source node sends a confirma-
tion message of the main route to its best neighbor toward
the destination, and another confirmation message of the
secondary backup route to another neighbor with lower
priority than the neighbor on the main track.

This method finds N paths from sources to the desti-
nation. If the primary path is lost for any reason, the
route switches to the backup path. Each node selects a
path among the different paths at any time using its
learning automaton. An unsafe chosen route is penalized
whereas a suitable route is rewarded. The adaptive penal-
izing and rewarding of paths increases or decreases the
probability of their selection. In the third phase, traffic is
distributed among all network nodes to prevent the
continued use and energy depletion of the nodes along a
particular path, thereby preventing premature death of
the network. Moreover, to maintain the paths in our
network, several paths are rediscovered when the original
path fails and when no active path exists between the
source and the destination.

4.2 | Neighbors recognition and
operators of the cellular automata

In the first phase, each learning automaton can under-
take three operations designated A1, A2, andA3 expressed
by (3), (4), and (5), respectively. Operation A1 increases
the radio range of the node by a fixed value (Ainc), A2

decreases the radio range of the node by a fixed value
(Adec), and A3 maintains the previous radio board.

A1 ¼ NewNode Radiusð Þ¼ Node RadiusþAincð Þ, ð3Þ

A2 ¼ NewNode Radiusð Þ¼ Node Radius�Adecð Þ, ð4Þ

A3 ¼ NewNode Radiusð Þ¼ Node Radiusþ0ð Þ: ð5Þ

Initially, the selection probabilities of the three opera-
tions are assumed equal. Later, the probability is calcu-
lated by (6), where m is the number of automated
operations:

8i, i≤m Pi ¼ 1
m
: ð6Þ

The automaton selects the value of the transmitted range
Rt based on the network densities of all nodes and sends
information to each node. At the beginning of the pro-
cess, all nodes are randomly and simultaneously
governed by one of the automatic operations: increasing
the radio range of the node by Ainc, decreasing the radio
range of the node by Adec, or maintaining a constant
radio range. The node radio board is then updated
accordingly. In the following stages, the probabilities of
these three actions change as penalties and rewards are
issued.

The nodes propagate the HELLO packet in all
broadcasts within their range. Each node that receives
the HELLO packet sends a packet called ACK to the
sender node. The number of neighbors is equal to the
number of ACKs reaching the sender node. If the num-
ber of neighbors is less than the minimum-neighbor
threshold or if the node has selected its maximum
radio power and the number of neighbors exceeds the
threshold, the automaton of the selected operation is
fined b. Otherwise, the automaton is rewarded a for
the chosen action. In both cases, the node’s radio board
is updated.

The destination node creates the FLOOD packet and
publishes it on the network, where it is accessible to all
neighboring nodes. The FLOOD package includes three
fields: the sender node number, number of steps, and the
sender-node energy level. The destination node fills these
fields before releasing the FLOOD packet. The sender
node number is set to the number (destination node), the
number of steps is set to zero, and the energy level is set
to the energy level (destination node). All nodes receiving
the FLOOD packet return the feedback packet, and the
receiving nodes of the feedback packet update their rou-
ting tables. The nodes receiving the FLOOD packet send
the entire FLOOD packet through the broadcast. This
process continues until the FLOOD package reaches all
groups on the network.

Here, the set of CLAs at each node equals the num-
ber of identified neighbors of that node. For each
neighbor node, a possible selection value is determined.
These values are initially identical and are later updated
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based on the penalty and reward assignments. If the
number of paths to the destination is zero, the related
CLA is fined by b and the neighbor search operation is
repeated.

4.3 | Criteria for calculating the β signal
determining the reward and penalty of
each neighbor

In this paper, the node holding the information selects an
action from its probability vectors (paths to destination)
and sets that action as its primary path. This choice prob-
ability is initially uniform and is later determined by the
probability of choosing each path. After selecting the
route for information-sending, the neighbor’s penalty
and reward amount should be calculated to maximize the
effectiveness of the following steps. In our method, the
reward and penalty parameters are dynamic and adaptive
and depend on the quality of the selected node. The β sig-
nal is calculated based on the quality of the chosen path
as follows:

Signalβ ið Þ¼ω
SLeveliPNeighbor#

j¼1 ELevelj

þ 1�ωð Þ HopCountiPNeighbor#
j¼1 HopCountj

Neighbor#1,2,3,4:

ð7Þ

In this relation, Signalβ ið Þ represents the value of the β
signal calculated for the ith neighbor, ELevelj is the secu-
rity level of the neighboring node j that sends the packet,
HopCounti is the number of steps for sending informa-
tion via neighboring node i to the sink node, and
Neighbor# is the total number of adjacent nodes. ω is a
user-determined parameter in the range [0, 1] that
weights the two security levels and the number of steps.
After this step, each node in the network has different
possible vectors for each of its neighbors in the cellular
automata model. Slevi,j tð Þ refers to the security level of
node i along path j at time t during the path discovery
process between a source node and the sink. It is calcu-
lated as

Slevi ¼DeliveryRatioi
SendingRatioi

: ð8Þ

Here, DeliveryRatioi is the number of acknowledgments
received by node i among all messages sent through node
i and SendingRatioi is the total number of packets sent
while discovering the path between the source and desti-
nation nodes through node i.

4.4 | Route-selection fines and
rewards along each route depending on
the β signal

The node holding the information selects an action
among its probability vectors. Each selection is a route
through which data are sent through a nearby neighbor,
and the probabilities of all neighbors sum to 1. The
selection probabilities of all nodes are initially equal
because the nature of the network is initially unknown,
so all neighbors are given the same chance of sending
information. The entries in the probability vector of
neighbors are initially set to 1=Neighbor# where
Neighbor# represents the number of neighbors of a CLA.
In the following steps, the probability vectors are used for
node selection and their values depend on the quality of
the information along the transmission paths in the pre-
vious steps, which accords with the number of adaptive
fines and rewards. The CLA with adaptive parameters
receives the optimal choice that improves the network
efficiency.

After calculating the new probability vector, the node
with the most probability is selected as the information
sender. In the network routing process, the node holding
the information sends a data packet to its best neighbor
on the path to the destination.

After sending data, each node receives a data packet,
creates an ACK packet, and sends it to the packet-sender
node. After receiving an ACK, the node calculates signalβ
using (7) and calculates the path quality from the energy
of the selected neighbor node and the number of hops in
the data path. Depending on the value of signalβ, one of
the following is implemented:

• If signalβ along the receiving path of ACK exceeds the
threshold specified by Inequality (9), reward the action
and update the action vector’s probability using the
learning algorithm.

Signalβ ≥ 0:5Then

a¼ μ1þθ1
γ �EleveliþMaxHop�HopCounti

γ �AvgEnergyiþMaxHop

: ð9Þ

• If signalβ is below the threshold, the action selected by
the transmitter node is not appropriate and should be
punished by Inequality (10):

Signalβ ≤ 0:5Then

b¼ μ2þθ2
γ AvgEnergyi�Elevelið ÞþHopCounti

γ �AvgEnergyiþMaxHop

: ð10Þ
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In Inequalities (9) and (10), Eleveli is the energy level of
the node sending the ACK packet. AvgEnergyi is the
average energy of the first nodes of the other routes from
node i to the destination. MaxHop is the maximum num-
ber of links from the node receiving the ACK packet to
the destination. μ1 and μ2 denote the minimum accept-
able values of the reward and penalty parameters, respec-
tively. As the number of steps and the amount of
remaining energy differ in scale, we specify a parameter γ
that approximately equalizes the scales of both terms.
Finally, the values of α and β are upper limited by setting
E� α, β, Cf g and θ2. From the verification received from
the nodes during this step, the system can learn the best
available routes for energy consumption and hop cou-
nting. After selecting and sending the data, the sending
operation is complete if the package is received at the
destination. Otherwise, if the original path is lost and
there exist one or more backup paths, it selects one
backup path for data sending.

To ensure that the data packet is received at the desti-
nation, the destination node sends an ACK packet to the
sending node. As these data transmissions consume the
energy of nodes, the number of messages between nodes
should be reduced as far as possible. For this purpose, we
introduce a parameter p. Each node selects each path
and sends p data packets along it. Also, each node sends
only one ACK packet to the node from which it received
the data packets. This mechanism reduces the number of
ACK packets exchanged in the network and conse-
quently reduces the power consumption.

4.5 | Qualitative evaluation of
comprehensive communications

The quality stability of a node, which determines the
attack resistance of the node, can be determined from the
quality history. The quality of the current communica-
tion is a short-term value focused on the current
moment. Hence, it is not by itself a reliable indicator. In
this research, the quality of a node is determined from
the quality of the node communications, similarly to
[24]. Using a sliding window, the proposed method inter-
rogates each node on the quality of its communications
with each of its neighbors. The nodes’ opinions are
pooled and whether an attack is normal or not is judged
by voting. The knot is done. At the time of evaluation, a
sliding time window with a dynamic age factor is applied.
A sliding time window contains time units, and each
window records the current quality of neighboring nodes
of a CLA per unit time. The time window moves forward
by one time unit, and the quality of all neighbors of the
CLA recorded at the end of each time window gives the

quality history of that node. The age coefficient age spec-
ifies the importance of each unit of time in the slider time
window and prioritizes the recent data over the earlier
data. The age of neighbor i, denoted agei, depends on
the number of time windows in which neighbor
i communicates with CLA. The quality of the compre-
hensive connection of a node, which indicates the com-
prehensive quality of a neighboring node of node j, is
called Qualityj. It is calculated as

Qualityj ¼
XjW j

i¼1

agei� 1�qualityij
� �

�qualityij, ð11Þ

where Qualityj � 0, 1½ �, jW j is the window length,
qualityij denotes the quality of node j in the ith time win-
dow, and agei � 0, 1½ ] with age1 < age2 <…<agejwj is the
age factor. Here, the age factor is expressed by the follow-
ing exponential function: agei ¼ γjW j and γ � 0, 1½ �.

5 | RECOGNITION AND
PUNISHISMENT OF SELECTIVE
ATTACK BEHAVIORS

Once the CLA has selected node j as the next step based
on the probability of operation, it receives a response
from the environment based on the quality of the com-
prehensive communication of node j. Node j is considered
suspicious when the quality of the comprehensive
qualityij connection evaluated by node i is less than a
predefined Quality_Threshold, which depends on the
network requirements. If every node j adjacent to node i
is suspicious, then node i sends the identification number
of that node to the cluster head or sink to evaluate a vot-
ing process on node j according to the communication
qualities with other nodes in the network. In this study,
each node i in the CLA suspects a neighboring node j if
Qualityj value is below 0.5.

The outcome of the vote determines whether the
judged node is trusted or distrusted. The trust ratio TRj is
defined as the number of nodes that distrust node
j divided by the number of nodes participating in the
vote. Whether a node is trusted or suspected is deter-
mined as follows:

1. If TRj <25%, more than 75% of the nodes participat-
ing in the voting distrust node j. The suspicious node j
is then removed from the routing. In addition, the
cluster head announces all neighbors of node j to join
its blocklist. The action probability in each CLA is set
to 0, and the CLA that selected the malicious node re-
selects the next step based on the probabilities of the
other actions.
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2. If 25%≤TRj ≤ 75%, more than 25% but less than 75%
of the participating nodes distrust node j. The environ-
ment gives an unfavorable response to the CLA, that
is, β= 1; this action is fined in the CLA with the
dynamic parameter b¼ 1�TRj

� �
=2 (LR-P model).

3. If TRj >75%, less than 25% of the participating nodes
distrust node j. The environment gives favorable feed-
back to the CLA and β is set to 0. This action of the
automaton is rewarded with the dynamic parameter
a¼Midvote�TRj whereMidvote represents the average
vote value of the nodes in the voting process.

6 | SIMULATION MODEL

The proposed method was simulated in MATLAB
R2016a software. The simulation was run on a computer
system with a corei7 processor having 4 GB of main
memory. The operating system was Windows 7. The net-
work was simulated for 60 min and some network com-
munication statistics were collected. The number of
network nodes was 100, including 20 malicious nodes.
The information required for the research was collected
while monitoring the network performance. To build a
forward cell attack detection system based on CLAs,
24 000 and 3000 data patterns were used in the training
and validation phases, respectively, and 5000 patterns
were retained as the test data. Based on the CLA, each
pattern was categorized as attack or non-attack. Attacks
were identified in the data extracted from access and data
transfer in the IoT.

The accuracy of the proposed system was evaluated
by cross-validation. In classification applications, cross-
validation determines the usefulness of the model in
practical scenarios. In each category, the answers fall into
one of four categories:

True Positive (TP): Records in this category are posi-
tive and correctly identified as positive by the model.

True Negative (TN): Records in this category are neg-
ative and correctly identified as negative by the model.

False Positive (FP): Records in this category are nega-
tive but are incorrectly identified as positive by the model.

False Negative (FN): Records in this category are
positive but are incorrectly identified as negative by the
model.

To compare the accuracy of the classifier based on the
proposed method, we adopted the Precision and Recall
measures, respectively, defined as

Precision¼ TP
TPþFP

,

Recall¼ TP
TPþFN

:

ð12Þ

The Precision indicates the proportion of positive predic-
tions among the categorical positive predictions. The
Recall is the ratio of the number of correctly identified
positive predictions to the total number of available
positive predictions.

7 | EXPERIMENTS AND
DISCUSSION

In this section, the performance of the proposed method
is compared with those of existing methods, specifically
with two highly regarded and well-known methods for
detecting attacks on IoT. The proposed method was simu-
lated with different input parameters and evaluated on
the above performance criteria. Figures 2, 3, and 4 respec-
tively plot the true positive rate (TPR), Precision metric,
and Recall rate as functions of node number in the attack
detection system. The results of the proposed system are
compared with those of the automata model [26] and
SecTrust [27]. The CLA-based IoT IDSs achieved higher
TPR and Precision criteria than the existing methods.
The improved correct positive rate indicates that our
method better detects attacks than the other two methods
and detects a higher percentage of actual attacks.

F I GURE 2 True positive rate versus number of nodes

F I GURE 3 Precision versus number of nodes
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The Recall criterion represents the proportion of
records that were identified as attacks in practice; as
such, it is an essential qualitative criterion for intrusion
attack detection systems. Ideally, the Recall should be
low. A high Recall means that some attempted attack
accesses are incorrectly identified as normal. As this cri-
terion represents the percentage of attacks that have been
mistaken for normal accesses, a network with high Recall
can be sabotaged by intruder and hostile nodes, with neg-
ative consequences and possibly severe damage.

As shown in Figure 5, the false positive rates (FPRs)
were consistently lower in the proposed method than in
the other studies, confirming that the network correctly
detected most attacks and misclassified only a few nor-
mal records as attacks. Note that the FPR was higher in
the 150-node network than in networks with more and
fewer than 150 nodes. In the FPR, the numerator is the
number of false positive detections and the denominator
is the total number of network nodes. In the 200-node
network, the proposed method operated properly and the
number of normal records incorrectly identified as an
attack was not significantly increased, meaning that the
form of the retention did not change significantly. The
decrease in FPR in the 200-node network was entirely
attributed to the increase in the denominator
(an increase of 50) from that of the 150-node network. In

the 200-node simulation, the amount of communication
in the network was high and the attack detection was
efficient. The effectiveness of attack detection can be
attributed to the comprehensive communication quality
and the voting decisions of nodes regarding the reliability
of their neighbors. In this case, the number of attacks
was no higher than in the 150-node network. An increase
in the number of network nodes with no increase in false
positive detection will reduce the FPR; therefore, the pro-
posed method better suppresses the vulnerability of the
network than the existing methods.

Further comparisons between the proposed and exis-
ting methods are discussed below. In the first experiment,
the number of attackers in the 100-node network was
increased from 2 to 30. Figures 6 and 7 respectively plot
the packet loss rates and throughputs of the three
methods as functions of number of attacks. As shown in
Figure 6, the number of lost packets initially rose steeply
with number of attacks, and the package delivery rate
declined. As the number of attacks increased, the
attacker nodes blocked the packet forwarding and
disrupted the network routing. By calculating the com-
prehensive communication quality of each node, the pro-
posed method detected the attacking nodes and
efficiently eliminated them from the list of node neigh-
bors. As the attacking nodes were identified, the quality
of the network routing increased; therefore, the number

F I GURE 4 Recall versus number of nodes

F I GURE 5 False positive rate versus number of nodes

F I GURE 6 Packet loss versus number of attacks

F I GURE 7 Throughput versus number of attacks
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of lost packets was robust against further increase in
number of attacks. Overall, the packet loss was lower in
the proposed method than in the previous studies
(Figure 7), because the CLA rapidly identifies and isolates
attacks. Through collaborative exchange of trust values
between active nodes, the proposed method detects
attackers with higher accuracy than the methods pres-
ented in [25,26].

Because energy consumption in IoT and wireless sen-
sor nodes critically affects the network performance, we
attempted to increase the network security and reliability
while maintaining low energy consumption. Accordingly,
our method considers the balance between network reli-
ability and energy consumption. The energy consump-
tions of the proposed and previous methods are
compared in Figure 8. The power consumption was
clearly lower in our method than in the previous
methods, and the difference grew with increasing num-
ber of nodes. Here, the number of network nodes was
varied from 100 to 200. The much lower average energy
consumption in the network run by our method will pro-
long the network life.

As demonstrated in the above results, the proposed
method improved the energy consumption in networks
with different numbers of network nodes. High energy
consumption is known to reduce the lifetime of a net-
work. In the proposed method, adaptive fines and
rewards based on energy consumption in the IoT create
an energy-load balance between all nodes. The reduced
power consumption improved the efficiency of the pro-
posed CLA-based method and extended the network life-
time. Energy efficiency is crucial for maximizing the
lifetime of sensor nodes in IoT, as nodes typically draw
power from a limited-capacity battery source. Further-
more, most IoT applications require secure and long-term
operation of the sensor nodes.

Figure 9 plots the network lifetimes of the three
methods as functions of network nodes. In this simula-
tion, the transmitted traffic rate was 10 packets per

second. The network lifetime was defined as the time
between the start of the simulation and turn-off of the
first sensor. As shown in the figure, the proposed proto-
col extended the network lifetime from those of the previ-
ous studies. The proposed method dynamically learns the
traffic patterns and selects the most efficient paths based
on CLA; consequently, the energy consumption is
reduced and the lifetime is lengthened because each node
predicts the traffic and forwarding data via several paths;
moreover, the workload is distributed across different
paths rather than concentrated along the most used
paths.

As the number of nodes increased, the proposed
method and automaton-based method consistently con-
sumed the least and most energy, respectively. The low
power consumption directly explains the long lifetime of
the proposed method (note that the lifetime trends echo
the energy consumption trends). These results prove that
lowering the power consumption extends the lifetime of
network nodes.

Increasing the number of network nodes increased
the number of packets exchanged in the network, thereby
increasing traffic and congestion and reducing the net-
work life. This inference is reasonably expected.

8 | CONCLUSION

This paper proposes a binary adaptive learning model for
detection of IoT attacks. The method uses CLA with
parameters that adapt to energy consumption, the compre-
hensive communication quality, and voting by neighbors.
A new CLA-based architecture for attack detection was
then described. Comparative simulation results confirmed
the high quality of the proposed method. The proposed
model accurately detects IoT attacks while increasing the
network efficiency. The existing methods for IoT-attack
detection ignore the energy consumption, which is a cru-
cial determiner of network performance. The proposedF I GURE 8 Energy consumption versus number of nodes

F I GURE 9 Network lifetime versus number of nodes
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method increases both the security and reliability of the
network and establishes a balance between network reli-
ability and energy consumption. However, our method
requires full synchronization of the network nodes. In
future work, we will develop a fully distributed cluster-
based structure for IoT that removes the limitation of com-
plete coordination between the network nodes.

CONFLICT OF INTEREST
The authors declare that there are no conflicts of interest.

ORCID
Javad Dogani https://orcid.org/0000-0002-0466-2939

REFERENCES
1. L. Lee and K. Lee, The Internet of Things (IoT): Applications,

investments, and challenges for enterprises, Bus. Horiz. 4 (2015),
431–440.

2. M. M. Noor and W. H. Hassan, Current research on Internet of
Things (IoT) security: A survey, Comput. Netw. 148 (2019),
283–294.

3. E. B. Priyanka, C. Maheswari, and S. Thangavel, A smart-
integrated IoT module for intelligent transportation in oil indus-
try, Int. J. Numer. Model. 1 (2020), article no. e2731.

4. L. García et al., IoT-based smart irrigation systems: An overview
on the recent trends on sensors and IoT systems for irrigation in
precision agriculture, Sensors 20 (2020), article no. 1042.

5. F. Mehmood et al., A novel approach towards the design and
implementation of virtual network based on controller in future
IoT applications, Electronics 9 (2020), article no. 604.

6. F. John Dian, R. Vahidnia, and A. Rahmati, Wearables and the
Internet of Things (IoT), applications, opportunities, and chal-
lenges: A survey, IEEE Access 8 (2020), 69200–69211.

7. K. Ashton, That ‘Internet of Things’ thing, 2009, Available
from: http://www.rfidjournal.com/articles/view?4986

8. K. Shafique et al., Internet of Things (IoT) for next-generation
smart systems: A review of current challenges, future trends and
prospects for emerging 5G-IoT scenarios, IEEE Access 8 (2020),
23022–23040.

9. L. Greco et al., Trends in IoT based solutions for health care:
Moving AI to the edge, Pattern Recognit. Lett. 135 (2020),
346–353.

10. F. Al-Turjman, H. Zahmatkesh, and R. Shahroze, An overview
of security and privacy in smart cities IoT communications,
Trans. Emerg. Telecommun. Technol. (2019), e3677.

11. V. Hassija et al., A survey on IoT security: Application areas,
security threats, and solution architectures, IEEE Access 7
(2019), 82721–82743.

12. N. Chaabouni et al., Network intrusion detection for IoT security
based on learning techniques, IEEE Commun. Surv. Tutor. 21
(2019), 2671–2701.

13. M. Gajewski et al., Anomaly traffic detection and correlation in
smart home automation IoT systems, Trans. Emerg.
Telecommun. Technol. 1 (2020), article no. e4053.

14. L. Chettri and R. Bera, A comprehensive survey on Internet of
Things (IoT) toward 5G wireless systems, IEEE Internet
Things J. 7 (2020), 16–32.

15. M. F. Elrawy, A. I. Awad, and H. F. A. Hamed, Intrusion detec-
tion systems for IoT-based smart environments: A survey, J.
Cloud Comput. 7 (2018), 1–20.

16. M. D. S. S. Romeo, Intrusion detection system (IDS) in Internet
of Things (IoT) devices for smart home, Int. J. Psychosoc.
Rehabil. 23 (2019), 1217–1227.

17. S. N. Mohanty et al., An efficient lightweight integrated
blockchain (ELIB) model for IoT security and privacy, Future
Gener. Comput. Syst. 102 (2020), 1027–1037.

18. Y. Maleh and A. Ezzati, Towards an efficient datagram trans-
port layer security for constrained applications in Internet of
Things, Int. Rev. Comput. Softw. 11 (2016), 611–621.

19. P. Sudhakaran, Energy efficient distributed lightweight authenti-
cation and encryption technique for IoT security, Int. J.
Commun. Syst. (2019), article no. e4198.

20. J. Kari, Theory of cellular automata: A survey, Theor. Comput.
Sci. 334 (2005), 3–33.

21. H. H. Pajouh et al., A two-layer dimension reduction and two-
tier classification model for anomaly-based intrusion detection
in IoT backbone networks, IEEE Trans. Emerg. Topics Comput.
Secur. 7 (2019), no. 2, 314–323.

22. R. Rani, S. Kumar, and U. Dohare, Trust evaluation for light
weight security in sensor enabled Internet of Things: Game
theory oriented approach, IEEE Internet Things J. 6 (2019),
8421–8432.

23. T. D. Nguyen et al., DI OT: A federated self-learning anomaly
detection system for IoT, in Proc. IEEE Int. Conf. Distrib.
Comput. Syst. (ICDCS), (Dallas, TX, USA), July 2019.

24. H. Zhu et al., Detection of selective forwarding attacks based on
adaptive learning automata and communication quality in
wireless sensor networks, Int. J. Distrib. Sens. Netw. 14 (2018),
no. 11, 1–15.

25. D. Airehrour, J. Gutierrez, and S. Kumar Ray, A lightweight
trust design for IoT routing, in Proc. IEEE Int. Conf. Depend-
able, Auton. Secure Comput. & Int. Conf. Pervasive Intell.
Comput. & Int. Conf. Big Data Intell. Comput. Cyber Sci.
Technol. Congr. (DASC/PiCom/DataCom/CyberSciTech),
(Auckland, New Zealand), Aug. 2016.

26. Y. Fu et al., An automata based intrusion detection method for
Internet of Things, Mob. Inf. Syst. 2017 (2017), 1–13.

27. X. Yan et al., Trustworthy network anomaly detection based on
an adaptive learning rate and momentum in IIoT, IEEE Trans.
Industr. Inform. 16 (2020), no. 9, 6182–6192.

28. H. Wu and W. Wang, A game theory based collaborative secu-
rity detection method for Internet of Things systems, IEEE Trans.
Inf. Forensics Secur. 13 (2018), no. 6, 1432–1445.

29. T. Gu et al., Towards learning-automation IoT attack detection
through reinforcement learning, in Proc. IEEE Int. Symp.
World Wirel. Mob. Multimed. Netw. (WoWMoM), (Cork,
Ireland), Aug. 2020.

30. S. Venkatraman and B. Surendiran, Adaptive hybrid
intrusion detection system for crowd sourced multimedia
Internet of Things systems, Multimed. Tools Appl. 79 (2020),
3993–4010.

166 DOGANI ET AL.

https://orcid.org/0000-0002-0466-2939
https://orcid.org/0000-0002-0466-2939
http://www.rfidjournal.com/articles/view?4986


31. A. A. Diro and N. Chilamkurti, Distributed attack detection
scheme using deep learning approach for Internet of Things,
Future Gener. Comput. Syst. 82 (2018), 761–768.

32. S. Rezvy et al., An efficient deep learning model for intrusion
classification and prediction in 5G and IoT networks, in Proc.
Annu. Conf. Inf. Sci. Syst. (CISS), (Baltimore, MD, USA), Mar.
2019, 1–6.

33. B. Hussain et al., Deep learning-based DDoS-attack detection
for cyber–physical system over 5G network, IEEE Trans. Industr.
Inform. 17 (2021), no. 2, 860–870.

34. W. Q. Li, Q. Yu, and L. X. Ma, Cellular automata-based
WSN energy saving technology, Adv. Mat. Res. 546–547 (2012),
1334–1339.

AUTHOR BIOGRAPHIES

Javad Dogani received his B.Sc.
degree in software engineering from
Technical and Vocational University,
Shiraz, Iran, in 2010 and an M.Sc.
degree in software engineering from
Shiraz University, Shiraz, Iran, in
2012. He has been an assistant pro-

fessor in the Department of Electrical and Computer
Engineering at the University of Hormozgan from
2014 to 2018. His main research interests include
wireless networks, Internet of Things systems, big
data, cloud computing, and deep learning.

Mahdieh Farahmand received her
B.Sc. degree in software engineering
from the Shahid Bahonar University
of Kerman, Kerman, Iran, in 2014
and an M.Sc. degree in Artificial
Intelligence from the Science and
Research Branch, Islamic Azad

University, Tehran, Iran, in 2018. Her main research
interests include wireless networks, Internet of Things
systems, distributed systems, and deep learning.

Hassan Daryanavard received his
B.Sc. degree in electrical engineering
from Shahid Rajaei University,
Tehran, Iran, in 2008 and M.Sc. and
Ph.D. degrees in Digital Electronics
from the University of Tabriz and
Shahid Beheshti University in 2010

and 2015, respectively. He is now an assistant profes-
sor in the Department of Electrical and Computer
Engineering at the University of Hormozgan. His
main research interests include FPGA embedded sys-
tem design and Internet of Things systems.

How to cite this article: J. Dogani,
M. Farahmand, and H. Daryanavard, A new
method to detect attacks on the Internet of Things
(IoT) using adaptive learning based on cellular
learning automata, ETRI Journal 44 (2022),
155–167. https://doi.org/10.4218/etrij.2021-0044

DOGANI ET AL. 167

https://doi.org/10.4218/etrij.2021-0044

