• Title/Summary/Keyword: Adaptive immunity

Search Result 120, Processing Time 0.026 seconds

Protection of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus (IHNV) by immunization with G gene's cytoplasmic and transmembrane region-deleted single-cycle IHNV

  • Jae Young, Kim;Jun Soung, Kwak;Hyoung Jun, Kim;Ki Hong, Kim
    • Journal of fish pathology
    • /
    • v.35 no.2
    • /
    • pp.157-165
    • /
    • 2022
  • Single-cycle viruses generated by reverse genetic technology are replication-incompetent viruses due to the elimination of gene(s) essential for viral replication, which provides a way to overcome the safety problem in attenuated viruses. Infectious hematopoietic necrosis virus (IHNV) is a major pathogen causing severe damage in cultured salmonid species. In the present study, we generated a single-cycle IHNV lacking the transmembrane and cytoplasmic domain in the G gene (rIHNV-GΔTM) and evaluated the prophylactic potential of rIHNV-GΔTM in rainbow trout (Oncorhynchus mykiss). To produce rIHNV-GΔTM, IHNV G protein-expressing Epithelioma papulosum cyprini (EPC) cells were established. However, as the efficiency of rIHNV-GΔTM production in EPC cell clones was not high, fish were immunized with a low-tittered single-cycle virus (1.5 × 102 PFU/fish). Despite the low dose, the single-cycle IHNV induced significant protection in rainbow trout against IHNV infection, suggesting high immunogenicity of rIHNV-GΔTM. No significant difference in serum ELISA titers against IHNV between the rIHNV-GΔTM immunized group and the control group suggests that the immunized dose of rIHNV-GΔTM might be too low to induce significant humoral adaptive immune responses in rainbow trout. The involvement of adaptive cellular immunity or innate immunity in the present significantly higher protection by the immunization with rIHNV-GΔTM should be further investigated to know the protection mechanism.

Comparison of media for a human peripheral blood mononuclear cell-based in vitro vaccine evaluation system

  • Shuran Gong;Putri Fajar;Jacqueline De Vries-Idema;Anke Huckriede
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.328-336
    • /
    • 2023
  • Purpose: Human peripheral blood mononuclear cell (PBMC)-based in vitro systems can be of great value in the development and assessment of vaccines but require the right medium for optimal performance of the different cell types present. Here, we compare three commonly used media for their capacity to support innate and adaptive immune responses evoked in PBMCs by Toll-like receptor (TLR) ligands and whole inactivated virus (WIV) influenza vaccine. Materials and Methods: Human PBMCs were cultured for different periods of time in Roswell Park Memorial Institute (RPMI), Dulbecco's minimal essential medium (DMEM), or Iscove's modified DMEM (IMDM) supplemented with 10% fetal calf serum. The viability of the cells was monitored and their responses to TLR ligands and WIV were assessed. Results: With increasing days of incubation, the viability of PBMCs cultured in RPMI or IMDM was slightly higher than that of cells cultured in DMEM. Upon exposure of the PBMCs to TLR ligands and WIV, RPMI was superior to the other two media in terms of supporting the expression of genes related to innate immunity, such as the TLR adaptor protein gene MyD88 (myeloid differentiation factor 88), the interferon (IFN)-stimulated genes MxA (myxovirus resistance protein 1) and ISG56 (interferon-stimulated gene 56), and the leukocyte recruitment chemokine gene MCP1 (monocyte chemoattractant protein-1). RPMI also performed best with regard to the activation of antigen-presenting cells. As for adaptive immunity, when stimulated with WIV, PBMCs cultured in RPMI or IMDM contained higher numbers of IFNγ-producing T cells and secreted more immunoglobulin G than PBMCs cultured in DMEM. Conclusion: Taken together, among the different media assessed, RPMI was identified as the optimal medium for a human PBMC-based in vitro vaccine evaluation system.

Pattern-Recognition Receptor Signaling Initiated From Extracellular, Membrane, and Cytoplasmic Space

  • Lee, Myeong Sup;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Invading pathogens are recognized by diverse germline-encoded pattern-recognition receptors (PRRs) which are distributed in three different cellular compartments: extracellular, membrane, and cytoplasmic. In mammals, the major extracellular PRRs such as complements may first encounter the invading pathogens and opsonize them for clearance by phagocytosis which is mediated by membrane-associated phagocytic receptors including complement receptors. The major membrane-associated PRRs, Toll-like receptors, recognize diverse pathogens and generate inflammatory signals to coordinate innate immune responses and shape adaptive immune responses. Furthemore, certain membrane-associated PRRs such as Dectin-1 can mediate phagocytosis and also induce inflammatory response. When these more forefront detection systems are avoided by the pathogens, cytoplasmic PRRs may play major roles. Cytoplasmic caspase-recruiting domain (CARD) helicases such as retinoic acid-inducible protein I (RIG-I)/melanoma differentiation-associated gene 5 (MDA5), mediate antiviral immunity by inducing the production of type I interferons. Certain members of nucleotide-binding oligomerization domain (NOD)-like receptors such as NALP3 present in the cytosol form inflammasomes to induce inflammatory responses upon ligand recognition. Thus, diverse families of PRRs coordinately mediate immune responses against diverse types of pathogens.

Backbone NMR assignments of the anti-CRISPR AcrIIA5 from phages infecting Streptococcus thermophilus

  • An, So Young;Kim, Eun-Hee;Bae, Euiyoung;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.70-76
    • /
    • 2020
  • The CRISPR-Cas system provides an adaptive immunity for bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, a single effector protein Cas9 and a guide RNA form an RNA-guided endonuclease complex that can degrade DNA targets of foreign origin. To avoid the Cas9-mediated destruction, phages evolved anti-CRISPR (Acr) proteins that neutralize the host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone 1H, 15N, and 13C resonance assignments of AcrIIA5 that inhibits the endonuclease activity of type II-A Streptococcus thermophilus Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The backbone chemical shifts of AcrIIA5 predict a disordered region at the N-terminus, followed by an αββββαβββ fold.

SCIENCE - Overview of the Immune System (학술 4 - 면역기구(免疫機構)의 재음미(再吟味))

  • Kim, U-Ho
    • Journal of the korean veterinary medical association
    • /
    • v.48 no.3
    • /
    • pp.177-191
    • /
    • 2012
  • 2011년도 Nobel 생리(生理) 의학상(醫學賞) : 자연(自然)(선천)(先天) 면역(免疫)(innate immunity)의 활성화에 관한 연구업적으로 B. A. Beutler와 J. A. Hoffmann, 그리고 수지상세포(樹枝狀細胞)(dendritic cell; DC)발견과 적응(適應)(획득)(獲得)면역(免疫)(adaptive immunity)에 있어서의 그들 세포의 역할을 밝혀낸 R. M. Steinman의 공동수상으로 금년도 Nobel 생리 의학상 수상자가 결정되었다는 보도가 지난 10월 3일 있었다(1-3). 그들의 업적을 요약하면 대략 다음과 같다. (Steinman교수는 Nobel수상자 발표 3일전인 9월 30일 암으로 사망함). 그들은 면역기구(immune system)의 활성화의 관건(key)이 되는 원리를 밝혀냄으로써, 면역기구에 관한 우리들의 이해를 혁신하였던 것이다. 과학자들은 오랫동안 세균(bacteria)이나 기타 미생물병원체들에 의한 공격에 대비하여 그들 자신을 방어하는 사람이나 기타 동물체에서의 면역응답(免疫應答)(immune response)의 문지기들을 탐색해 왔다. Beutler와 Hoffmann은 그와 같은 병원미생물을 인식하여 생체의 면역응답의 첫 단계인 자연면역을 활성화 할 수 있는 수용체 단백질(toll-like receptor protein)을 규명한 것이다(4,5). 한편 Steinmann은 면역계의 수지상세포(DC)와 병원미생물이 생체로부터 배제되는 면역응답의 후기단계인 적응면역을 활성화하고 조절하는 그들의 독특한 재능을 규명해 낸 것이다(6-8). 그들 3명의 발명은, 면역응답의 자연 및 적응 양상(樣相)이 어떻게 활성화되는 가를 밝혀냄으로써 질병의 기전에 관한 참신한 식견(識見)을 제공한 것이다. 그들의 연구는 감염병(感染病)(infectious disease), 암(癌)(cancer) 그리고 염증성질환(炎症性疾患)(inflammatory disease)에 대응하는 예방과 치료의 개발을 위한 새로운 방법을 개척한 것이다.

  • PDF

The Role and Clinical Value of Probiotics (Probiotics의 역할과 임상적 가치)

  • Rheu, Kyoung-Hwan;Yoon, Seoung-Woo
    • Journal of Korean Traditional Oncology
    • /
    • v.10 no.1
    • /
    • pp.75-86
    • /
    • 2005
  • Disease associated with microorganisms are far from resolved by current therapeutics. One of effective approach to health maintenance and disease control is the use of dietary bacterial and carbohydrate supplements. This comprises use of probiotics and prebiotics. Probiotics mean the live microorganisms, which when administered in adequate amounts confer a health benefit on the host. Prebiotics mean a nondigestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria that can Improve the host health. Especially, probiotics has the relation which is close with innate immunity and adaptive immunity. And probiotics has the clinical value with many disease like lactose intolerance, constipation, acute gastroenteritis, food hypersensitivity and allergy, atopic dermatitis, crohn's disease, rheumatoid arthritis, pelvic radiotherapy, intestinal inflammation and chemical exposure, colon cancer, inhibitory effect of Helicobacter pylori and lowering the level of cholesterol. We use jointly korean medicine and probiotics and it has the more therapeutic effect in the many disease.

  • PDF

Different Point of View to the Autoimmune Diseases and Treatment with Acupuncture

  • Inanc, Betul Battaloglu
    • Journal of Pharmacopuncture
    • /
    • v.23 no.4
    • /
    • pp.187-193
    • /
    • 2020
  • Objectives: It was aimed to investigate the basic action mechanism of the autoimmune diseases and common features of all diseases. Autoimmune disease are classified organ specific and systemic. Methods: These diseases are seen systemic and disease start locations, origins seem differently. This makes learning and understanding difficult. Autoimmune diseases investigated for easier understanding. It was noticed that, autoimmune diseases' starting places are specific and same all of them. This remarkable point is very important for acupuncture also. So; whole literatüre was researched and important point was found. Results: Whole autoimmune diseases are attack to mesodermal layers and mesodermal origin organs of the body's. The common property of all these disease are same; Diseases start from the mesoderm and mesodermal layer even though their organ origins' belongs to different germ layer. From this point of view, we were able to classify autoimmune diseases simply and it was planned how can we effect body in this context with acupuncture. Conclusion: And, when immunity comes into question, induction of adaptive immunity is depend on antigen presentation to T cells and this situation take place in the lymph node (LN) and also in the skin.When we sank the acupuncture needle into skin, signals create and start mesodermal contacts, during this time mesenchymal origin' autoimmune cells are regulated with this signals.

Adaptogenic effects of Panax ginseng on modulation of immune functions

  • Ratan, Zubair Ahmed;Youn, Soo Hyun;Kwak, Yi-Seong;Han, Chang-Kyun;Haidere, Mohammad Faisal;Kim, Jin Kyeong;Min, Hyeyoung;Jung, You-Jung;Hosseinzadeh, Hassan;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.32-40
    • /
    • 2021
  • Traditional medicinal practices have used natural products such as adaptogens to treat inflammatory, autoimmune, neurodegenerative, bacterial, and viral diseases since the early days of civilization. Panax ginseng Myer is a common herb used in East Asian countries for millennia, especially in Korea, China, and Japan. Numerous studies indicate that ginseng can modulate the immune system and thereby prevent diseases. Although the human immune system comprises many different types of cells, multiple studies suggest that each type of immune cell can be controlled or stimulated by ginseng or its derivatives. Provisional lists of ginseng's potential for use against viruses, bacteria, and other microorganisms suggest it may prove to be a valuable pharmaceutical resource, particularly if higher-quality evidence can be found. Here, we reviewed the role of ginseng as an immune-modulating agent in attempt to provide a valuable starting point for future studies on the herb and the human immune system.

The Role of Adiponectin in the Skin

  • Oh, Jieun;Lee, Yeongyeong;Oh, Sae-Woong;Li, TianTian;Shin, Jiwon;Park, See-Hyoung;Lee, Jongsung
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.221-231
    • /
    • 2022
  • Adiponectin (Ad), a 30 kDa molecule, is an anti-diabetic adipokine; although derived from adipose tissue, it performs numerous activities in various other tissues. It binds to its own receptors, namely adiponectin receptor 1(AdipoR1), adiponectin receptor 2 (AdipoR2), and T-cadherin (CDH13). Ad plays several roles, especially as a regulator. It modulates lipid and glucose metabolism and promotes insulin sensitivity. This demonstrates that Ad has a robust correlation with fat metabolism. Furthermore, although Ad is not in direct contact with other tissues, including the skin, it can be delivered to them by diffusion or secretion via the endocrine system. Recently it has been reported that Ad can impact skin cell biology, underscoring its potential as a therapeutic biomarker of skin diseases. In the present review, we have discussed the association between skin cell biology and Ad. To elaborate further, we described the involvement of Ad in the biology of various types of cells in the skin, such as keratinocytes, fibroblasts, melanocytes, and immune cells. Additionally, we postulated that Ad could be employed as a therapeutic target to maintain skin homeostasis.

Enhancing the Immunogenicity of Platycodon Grandiflorum on Adaptive Immune System (길경(桔經)의 적응면역계(適應免疫界) 증강(增强) 효과(效果))

  • Park, Joon-Hong;Lee, Jin-Moo;Lee, Chang-Hoon;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Khung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • Purpose: This study was designed to investigate enhancing the immunogenicity effects of Platycodon grandiflorum(PG) on adaptive immune system. Methods: To investigate the effect of PG as an adjuvant, we used the ovalbumin (OVA) as an antigen at first. The proliferation of lymphocytes, the antibody titer, the subisotypes of antibodies and the production of cytokines were measured. Results: The proliferation of lymphocytes and the antibody titer were increased after PG treatment. The increased subisotypes of antibodies were IgG2 and IgG3 induced from T1-helper cells. However IgE induced from T2-helper cells was decreased. The production of cytokines derived from T1-helper cells was increased but that from T2-helper cells was decreased. Conclusion: It is supposed that PG has an immunogenicity effect as an adjuvant on adaptive immune system.