Browse > Article
http://dx.doi.org/10.6564/JKMRS.2020.24.3.070

Backbone NMR assignments of the anti-CRISPR AcrIIA5 from phages infecting Streptococcus thermophilus  

An, So Young (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
Kim, Eun-Hee (Center for Research Equipment, Korea Basic Science Institute)
Bae, Euiyoung (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
Suh, Jeong-Yong (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.24, no.3, 2020 , pp. 70-76 More about this Journal
Abstract
The CRISPR-Cas system provides an adaptive immunity for bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, a single effector protein Cas9 and a guide RNA form an RNA-guided endonuclease complex that can degrade DNA targets of foreign origin. To avoid the Cas9-mediated destruction, phages evolved anti-CRISPR (Acr) proteins that neutralize the host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone 1H, 15N, and 13C resonance assignments of AcrIIA5 that inhibits the endonuclease activity of type II-A Streptococcus thermophilus Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The backbone chemical shifts of AcrIIA5 predict a disordered region at the N-terminus, followed by an αββββαβββ fold.
Keywords
AcrIIA5; anti-CRISPR; Cas9; NMR spectroscopy;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 D. Deveau, J. E. Garneau, and S. Moineau, Annu. Rev. Microbiol. 64, 475 (2010)   DOI
2 S. J. Brouns, et al., Science 321, 960 (2008)   DOI
3 E. V. Koonin, K. S. Makarova, and F. Zhang, Curr. Opin. Microbiol. 37, 67 (2017)   DOI
4 W. Jiang and L. A. Marraffini, Annu. Rev. Microbiol. 69, 209 (2015)   DOI
5 S. H. Sternberg and J. A. Doudna, Mol. Cell 568, 568 (2015)
6 A. V. Wright, J. K. Nunez, and J. A. Doudna, Cell 164, 29 (2016)   DOI
7 J. E. Samson, A. H. Magadan, M. Sabri, and S. Moineau, Nat. Rev. Microbiol. 11, 675 (2013)   DOI
8 A. P. Hynes, et al., Nat. Microbiol. 10, 1374 (2017)
9 B. Garcia, et al., Cell Rep. 29, 1739 (2019)   DOI
10 G. Song, et al., Cell Rep. 29, 2579 (2019)   DOI
11 F. Delaglio, et al., J. Biomol. NMR 6, 277 (1995)   DOI
12 D. S. Garrett, R. Powers, A. M. Gronenborn, and G. M. Clore, J. Magn. Reson. 95, 214 (1991)   DOI
13 B. A. Johnson and R. A. Blevins, J. Biomol. NMR 4, 603 (1994)   DOI
14 Y. Shen, F. Delagio, G. Cornilescu, and A. Bax, J. Biomol. NMR 44, 213 (2009)   DOI
15 K. S. Jo, et al., J. Kor. Magn. Reson. Soc. 22, 64 (2018)   DOI
16 M. D. Seo, J. Kor. Magn. Reson. Soc. 24, 38 (2020)   DOI
17 G. W. Vuister, S. J. Kim, C. Wu, and A. Bax, J. Am. Chem. Soc. 116, 9206 (1994)   DOI
18 P. Romero, et al., Proteins 42, 38 (2001)   DOI
19 S. Y. An, et al., Nucleic Acids Res. 48, 7584 (2020)
20 B. Meszaros, G. Erdos, and Z. Dosztanyi, Nucleic Acids Res. 46, W329 (2018)   DOI