DOI QR코드

DOI QR Code

Backbone NMR assignments of the anti-CRISPR AcrIIA5 from phages infecting Streptococcus thermophilus

  • An, So Young (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Eun-Hee (Center for Research Equipment, Korea Basic Science Institute) ;
  • Bae, Euiyoung (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Suh, Jeong-Yong (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2020.09.10
  • Accepted : 2020.09.17
  • Published : 2020.09.20

Abstract

The CRISPR-Cas system provides an adaptive immunity for bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, a single effector protein Cas9 and a guide RNA form an RNA-guided endonuclease complex that can degrade DNA targets of foreign origin. To avoid the Cas9-mediated destruction, phages evolved anti-CRISPR (Acr) proteins that neutralize the host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone 1H, 15N, and 13C resonance assignments of AcrIIA5 that inhibits the endonuclease activity of type II-A Streptococcus thermophilus Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The backbone chemical shifts of AcrIIA5 predict a disordered region at the N-terminus, followed by an αββββαβββ fold.

Keywords

References

  1. D. Deveau, J. E. Garneau, and S. Moineau, Annu. Rev. Microbiol. 64, 475 (2010) https://doi.org/10.1146/annurev.micro.112408.134123
  2. S. J. Brouns, et al., Science 321, 960 (2008) https://doi.org/10.1126/science.1159689
  3. E. V. Koonin, K. S. Makarova, and F. Zhang, Curr. Opin. Microbiol. 37, 67 (2017) https://doi.org/10.1016/j.mib.2017.05.008
  4. W. Jiang and L. A. Marraffini, Annu. Rev. Microbiol. 69, 209 (2015) https://doi.org/10.1146/annurev-micro-091014-104441
  5. S. H. Sternberg and J. A. Doudna, Mol. Cell 568, 568 (2015)
  6. A. V. Wright, J. K. Nunez, and J. A. Doudna, Cell 164, 29 (2016) https://doi.org/10.1016/j.cell.2015.12.035
  7. J. E. Samson, A. H. Magadan, M. Sabri, and S. Moineau, Nat. Rev. Microbiol. 11, 675 (2013) https://doi.org/10.1038/nrmicro3096
  8. A. P. Hynes, et al., Nat. Microbiol. 10, 1374 (2017)
  9. B. Garcia, et al., Cell Rep. 29, 1739 (2019) https://doi.org/10.1016/j.celrep.2019.10.017
  10. G. Song, et al., Cell Rep. 29, 2579 (2019) https://doi.org/10.1016/j.celrep.2019.10.078
  11. F. Delaglio, et al., J. Biomol. NMR 6, 277 (1995) https://doi.org/10.1007/BF00197809
  12. D. S. Garrett, R. Powers, A. M. Gronenborn, and G. M. Clore, J. Magn. Reson. 95, 214 (1991) https://doi.org/10.1016/0022-2364(91)90341-P
  13. B. A. Johnson and R. A. Blevins, J. Biomol. NMR 4, 603 (1994) https://doi.org/10.1007/BF00404272
  14. Y. Shen, F. Delagio, G. Cornilescu, and A. Bax, J. Biomol. NMR 44, 213 (2009) https://doi.org/10.1007/s10858-009-9333-z
  15. K. S. Jo, et al., J. Kor. Magn. Reson. Soc. 22, 64 (2018) https://doi.org/10.6564/jkmrs.2018.22.3.064
  16. M. D. Seo, J. Kor. Magn. Reson. Soc. 24, 38 (2020) https://doi.org/10.6564/jkmrs.2020.24.2.038
  17. G. W. Vuister, S. J. Kim, C. Wu, and A. Bax, J. Am. Chem. Soc. 116, 9206 (1994) https://doi.org/10.1021/ja00099a041
  18. P. Romero, et al., Proteins 42, 38 (2001) https://doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3
  19. B. Meszaros, G. Erdos, and Z. Dosztanyi, Nucleic Acids Res. 46, W329 (2018) https://doi.org/10.1093/nar/gky384
  20. S. Y. An, et al., Nucleic Acids Res. 48, 7584 (2020)