Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.089

The Role of Adiponectin in the Skin  

Oh, Jieun (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University)
Lee, Yeongyeong (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University)
Oh, Sae-Woong (Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University)
Li, TianTian (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University)
Shin, Jiwon (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University)
Park, See-Hyoung (Department of Bio and Chemical Engineering, Hongik University)
Lee, Jongsung (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University)
Publication Information
Biomolecules & Therapeutics / v.30, no.3, 2022 , pp. 221-231 More about this Journal
Abstract
Adiponectin (Ad), a 30 kDa molecule, is an anti-diabetic adipokine; although derived from adipose tissue, it performs numerous activities in various other tissues. It binds to its own receptors, namely adiponectin receptor 1(AdipoR1), adiponectin receptor 2 (AdipoR2), and T-cadherin (CDH13). Ad plays several roles, especially as a regulator. It modulates lipid and glucose metabolism and promotes insulin sensitivity. This demonstrates that Ad has a robust correlation with fat metabolism. Furthermore, although Ad is not in direct contact with other tissues, including the skin, it can be delivered to them by diffusion or secretion via the endocrine system. Recently it has been reported that Ad can impact skin cell biology, underscoring its potential as a therapeutic biomarker of skin diseases. In the present review, we have discussed the association between skin cell biology and Ad. To elaborate further, we described the involvement of Ad in the biology of various types of cells in the skin, such as keratinocytes, fibroblasts, melanocytes, and immune cells. Additionally, we postulated that Ad could be employed as a therapeutic target to maintain skin homeostasis.
Keywords
Adiponectin; Keratinocyte; Melanocyte; Fibroblast; Innate immunity; Adaptive immunity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R. and Kadowaki, T. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762-769.   DOI
2 Yuki, T., Yoshida, H., Akazawa, Y., Komiya, A., Sugiyama, Y. and Inoue, S. (2011) Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J. Immunol. 187, 3230-3237.   DOI
3 Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A. and Locati, M. (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176-185.   DOI
4 Galvan, M. D., Hulsebus, H., Heitker, T., Zeng, E. and Bohlson, S. S. (2014) Complement protein C1q and adiponectin stimulate Mer tyrosine kinase-dependent engulfment of apoptotic cells through a shared pathway. J. Innate Immun. 6, 780-792.   DOI
5 Kim, K. Y., Kim, J. K., Han, S. H., Lim, J. S., Kim, K. I., Cho, D. H., Lee, M. S., Lee, J. H., Yoon, D. Y., Yoon, S. R., Chung, J. W., Choi, I., Kim, E. and Yang, Y. (2006) Adiponectin is a negative regulator of NK cell cytotoxicity. J. Immunol. 176, 5958-5964.   DOI
6 Takemura, Y., Ouchi, N., Shibata, R., Aprahamian, T., Kirber, M. T., Summer, R. S., Kihara, S. and Walsh, K. (2007) Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J. Clin. Invest. 117, 375-386.   DOI
7 Tobin, D. J. (2018) Early evidence for opposing effects of full versus fragmented adiponectin on melanogenesis in human epidermal melanocytes. Br. J. Dermatol. 179, 561-562.   DOI
8 Tsang, J. Y., Li, D., Ho, D., Peng, J., Xu, A., Lamb, J., Chen, Y. and Tam, P. K. (2011) Novel immunomodulatory effects of adiponectin on dendritic cell functions. Int. Immunopharmacol. 11, 604-609.   DOI
9 Tsatsanis, C., Zacharioudaki, V., Androulidaki, A., Dermitzaki, E., Charalampopoulos, I., Minas, V., Gravanis, A. and Margioris, A. N. (2005) Adiponectin induces TNF-alpha and IL-6 in macrophages and promotes tolerance to itself and other pro-inflammatory stimuli. Biochem. Biophys. Res. Commun. 335, 1254-1263.   DOI
10 Vitseva, O. I., Tanriverdi, K., Tchkonia, T. T., Kirkland, J. L., McDonnell, M. E., Apovian, C. M., Freedman, J. and Gokce, N. (2008) Inducible Toll-like receptor and NF-κB regulatory pathway expression in human adipose tissue. Obesity 16, 932-937.   DOI
11 Abel, A. M., Yang, C., Thakar, M. S. and Malarkannan, S. (2018) Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869.   DOI
12 Achari, A. E. and Jain, S. K. (2017) Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 18, 1321.   DOI
13 Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D. and Zychlinsky, A. (2012) Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol. 30, 459-489.   DOI
14 Bang, S., Won, K. H., Moon, H. R., Yoo, H., Hong, A., Song, Y. and Chang, S. E. (2017) Novel regulation of melanogenesis by adiponectin via the AMPK/CRTC pathway. Pigment Cell Melanoma Res. 30, 553-557.   DOI
15 Bonnard, C., Durand, A., Vidal, H. and Rieusset, J. (2008) Changes in adiponectin, its receptors and AMPK activity in tissues of diet-induced diabetic mice. Diabetes Metab. 34, 52-61.   DOI
16 Chedid, P., Hurtado-Nedelec, M., Marion-Gaber, B., Bournier, O., Hayem, G., Gougerot-Pocidalo, M. A., Frystyk, J., Flyvbjerg, A., El Benna, J. and Marie, J. C. (2012) Adiponectin and its globular fragment differentially modulate the oxidative burst of primary human phagocytes. Am. J. Pathol. 180, 682-692.   DOI
17 Clark, R. A., Chong, B., Mirchandani, N., Brinster, N. K., Yamanaka, K., Dowgiert, R. K. and Kupper, T. S. (2006) The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431-4439.   DOI
18 Wang, Z. V. and Scherer, P. E. (2016) Adiponectin, the past two decades. J. Mol. Cell Biol. 8, 93-100.   DOI
19 Wensveen, F. M., Jelencic, V., Valentic, S., Sestan, M., Wensveen, T. T., Theurich, S., Glasner, A., Mendrila, D., Stimac, D., Wunderlich, F. T., Bruning, J. C., Mandelboim, O. and Polic, B. (2015) NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat. Immunol. 16, 376-385.   DOI
20 Wang, A. S. and Dreesen, O. (2018) Biomarkers of cellular senescence and skin aging. Front. Genet. 9, 247.   DOI
21 Masaki, H., Izutsu, Y., Yahagi, S. and Okano, Y. (2009) Reactive oxygen species in HaCaT keratinocytes after UVB irradiation are triggered by intracellular Ca(2+) levels. J. Invest. Dermatol. Symp. Proc. 14, 50-52.   DOI
22 Pajvani, U. B., Du, X., Combs, T. P., Berg, A. H., Rajala, M. W., Schulthess, T., Engel, J., Brownlee, M. and Scherer, P. E. (2003) Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073-9085.   DOI
23 Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M. and Ohtsuki, M. (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 17, 868.   DOI
24 Kim, M. J., Kim, E. H., Pun, N. T., Chang, J. H., Kim, J. A., Jeong, J. H., Choi, D. Y., Kim, S. H. and Park, P. H. (2017) Globular adiponectin inhibits lipopolysaccharide-primed inflammasomes activation in macrophages via autophagy induction: the critical role of AMPK signaling. Int. J. Mol. Sci. 18, 1275.   DOI
25 Shibata, S., Tada, Y., Asano, Y., Hau, C. S., Kato, T., Saeki, H., Yamauchi, T., Kubota, N., Kadowaki, T. and Sato, S. (2012) Adiponectin regulates cutaneous wound healing by promoting keratinocyte proliferation and migration via the ERK signaling pathway. J. Immunol. 189, 3231-3241.   DOI
26 Hu, E., Liang, P. and Spiegelman, B. M. (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697-10703.   DOI
27 Hug, C., Wang, J., Ahmad, N. S., Bogan, J. S., Tsao, T. S. and Lodish, H. F. (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl. Acad. Sci. U.S.A. 101, 10308-10313.   DOI
28 Hui, X., Gu, P., Zhang, J., Nie, T., Pan, Y., Wu, D., Feng, T., Zhong, C., Wang, Y., Lam, K. S. and Xu, A. (2015) Adiponectin enhances coldinduced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 22, 279-290.   DOI
29 Iwabu, M., Okada-Iwabu, M., Yamauchi, T. and Kadowaki, T. (2015) Adiponectin/adiponectin receptor in disease and aging. NPJ Aging Mech. Dis. 1, 15013.   DOI
30 Jasinski-Bergner, S., Buttner, M., Quandt, D., Seliger, B. and Kielstein, H. (2017) Adiponectin and its receptors are differentially expressed in human tissues and cell lines of distinct origin. Obes. Facts 10, 569-583.   DOI
31 Kim, Y., Cho, J. Y., Oh, S. W., Kang, M., Lee, S. E., Jung, E., Park, Y. S. and Lee, J. (2018) Globular adiponectin acts as a melanogenic signal in human epidermal melanocytes. Br. J. Dermatol. 179, 689-701.   DOI
32 Luo, Y. and Liu, M. (2016) Adiponectin: a versatile player of innate immunity. J. Mol. Cell Biol. 8, 120-128.   DOI
33 Mandal, P., Pratt, B. T., Barnes, M., McMullen, M. R. and Nagy, L. E. (2011) Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. J. Biol. Chem. 286, 13460-13469.   DOI
34 Mantzoros, C. S., Trakatelli, M., Gogas, H., Dessypris, N., Stratigos, A., Chrousos, G. P. and Petridou, E. T. (2007) Circulating adiponectin levels in relation to melanoma: a case-control study. Eur. J. Cancer 43, 1430-1436.   DOI
35 Marangoni, R. G., Masui, Y., Fang, F., Korman, B., Lord, G., Lee, J., Lakota, K., Wei, J., Scherer, P. E., Otvos, L., Yamauchi, T., Kubota, N., Kadowaki, T., Asano, Y., Sato, S., Tourtellotte, W. G. and Varga, J. (2017) Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Sci. Rep. 7, 4397.   DOI
36 Masamoto, Y., Arai, S., Sato, T., Yoshimi, A., Kubota, N., Takamoto, I., Iwakura, Y., Yoshimura, A., Kadowaki, T. and Kurokawa, M. (2016) Adiponectin enhances antibacterial activity of hematopoietic cells by suppressing bone marrow inflammation. Immunity 44, 1422-1433.   DOI
37 Medoff, B. D., Okamoto, Y., Leyton, P., Weng, M., Sandall, B. P., Raher, M. J., Kihara, S., Bloch, K. D., Libby, P. and Luster, A. D. (2009) Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling. Am. J. Respir. Cell Mol. Biol. 41, 397-406.   DOI
38 Monks, M., Irakleidis, F. and Tan, P. H. (2019) Complex interaction of adiponectin-mediated pathways on cancer treatment: a novel therapeutic target. J. Cancer Metastasis Treat. 5, 24.
39 Nestle, F. O. (2008) Psoriasis. Curr. Dir. Autoimmun. 10, 65-75.   DOI
40 Dong, Z., Zhuang, Q., Ye, X., Ning, M., Wu, S., Lu, L. and Wan, X. (2020) Adiponectin inhibits NLRP3 inflammasome activation in nonalcoholic steatohepatitis via AMPK-JNK/ErK1/2-NFκB/ROS signaling pathways. Front. Med. (Lausanne) 7, 546445.
41 Deng, Y. and Scherer, P. E. (2010) Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. N. Y. Acad. Sci. 1212, E1-E19.   DOI
42 Iwayama, T., Yanagita, M., Mori, K., Sawada, K., Ozasa, M., Kubota, M., Miki, K., Kojima, Y., Takedachi, M., Kitamura, M., Shimabukuro, Y., Hashikawa, T. and Murakami, S. (2012) Adiponectin regulates functions of gingival fibroblasts and periodontal ligament cells. J. Periodontal. Res. 47, 563-571.   DOI
43 Ngatu, N. R., Tanaka, M., Ikeda, M., Inoue, M., Kanbara, S. and Nojima, S. (2017) Sujiaonori-derived algal biomaterials inhibit allergic reaction in allergen-sensitized RBL-2H3 cell line and improve skin health in humans. J. Funct. Biomater. 8, 37.   DOI
44 Nguyen, K. D., Qiu, Y., Cui, X., Goh, Y. P., Mwangi, J., David, T., Mukundan, L., Brombacher, F., Locksley, R. M. and Chawla, A. (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104-108.   DOI
45 Odegaard, J. I. and Chawla, A. (2011) Alternative macrophage activation and metabolism. Annu. Rev. Pathol. 6, 275-297.   DOI
46 Ohashi, K., Parker, J. L., Ouchi, N., Higuchi, A., Vita, J. A., Gokce, N., Pedersen, A. A., Kalthoff, C., Tullin, S., Sams, A., Summer, R. and Walsh, K. (2010) Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 285, 6153-6160.   DOI
47 Pajvani, U. B., Hawkins, M., Combs, T. P., Rajala, M. W., Doebber, T., Berger, J. P., Wagner, J. A., Wu, M., Knopps, A., Xiang, A. H., Utzschneider, K. M., Kahn, S. E., Olefsky, J. M., Buchanan, T. A. and Scherer, P. E. (2004) Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279, 12152-12162.   DOI
48 Papakonstantinou, E., Roth, M. and Karakiulakis, G. (2012) Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol. 4, 253-258.   DOI
49 Rossi, A. and Lord, J. M. (2013) Adiponectin inhibits neutrophil apoptosis via activation of AMP kinase, PKB and ERK 1/2 MAP kinase. Apoptosis 18, 1469-1480.   DOI
50 Jung, M. Y., Kim, H. S., Hong, H. J., Youn, B. S. and Kim, T. S. (2012) Adiponectin induces dendritic cell activation via PLCγ/JNK/NF-κB pathways, leading to Th1 and Th17 polarization. J. Immunol. 188, 2592-2601.   DOI
51 Kawai, K., Kageyama, A., Tsumano, T., Nishimoto, S., Fukuda, K., Yokoyama, S., Oguma, T., Fujita, K., Yoshimoto, S., Yanai, A. and Kakibuchi, M. (2008) Effects of adiponectin on growth and differentiation of human keratinocytes-implication of impaired wound healing in diabetes. Biochem. Biophys. Res. Commun. 374, 269-273.   DOI
52 Kim, M., Park, K. Y., Lee, M. K., Jin, T. and Seo, S. J. (2016) Adiponectin suppresses UVB-induced premature senescence and hBD2 overexpression in human keratinocytes. PLoS ONE 11, e0161247.   DOI
53 Krueger, G. and Ellis, C. N. (2005) Psoriasis--recent advances in understanding its pathogenesis and treatment. J. Am. Acad. Dermatol. 53, S94-S100.   DOI
54 Kwon, K., Park, S. H., Han, B. S., Oh, S. W., Lee, S. E., Yoo, J. A., Park, S. J., Kim, J., Kim, J. W., Cho, J. Y. and Lee, J. (2018) Negative cellular effects of urban particulate matter on human keratinocytes are mediated by p38 MAPK and NF-κB-dependent expression of TRPV 1. Int. J. Mol. Sci. 19, 2660.   DOI
55 Lee, E. H., Itan, M., Jang, J., Gu, H. J., Rozenberg, P., Mingler, M. K., Wen, T., Yoon, J., Park, S. Y., Roh, J. Y., Choi, C. S., Park, W. J., Munitz, A. and Jung, Y. (2018) Eosinophils support adipocyte maturation and promote glucose tolerance in obesity. Sci. Rep. 8, 9894.   DOI
56 Brestoff, J. R., Kim, B. S., Saenz, S. A., Stine, R. R., Monticelli, L. A., Sonnenberg, G. F., Thome, J. J., Farber, D. L., Lutfy, K., Seale, P. and Artis, D. (2015) Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242-246.   DOI
57 Yamaguchi, N., Argueta, J. G., Masuhiro, Y., Kagishita, M., Nonaka, K., Saito, T., Hanazawa, S. and Yamashita, Y. (2005) Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett. 579, 6821-6826.   DOI
58 Yang, J., Lin, S. C., Chen, G., He, L., Hu, Z., Chan, L., Trial, J., Entman, M. L. and Wang, Y. (2013) Adiponectin promotes monocyte-to-fibroblast transition in renal fibrosis. J. Am. Soc. Nephrol. 24, 1644-1659.   DOI
59 Park, P. H., McMullen, M. R., Huang, H., Thakur, V. and Nagy, L. E. (2007) Short-term treatment of RAW264.7 macrophages with adiponectin increases tumor necrosis factor-alpha (TNF-alpha) expression via ERK1/2 activation and Egr-1 expression: role of TNF-alpha in adiponectin-stimulated interleukin-10 production. J. Biol. Chem. 282, 21695-21703.   DOI
60 Rothenberg, M. E. and Hogan, S. P. (2006) The eosinophil. Annu. Rev. Immunol. 24, 147-174.   DOI
61 Scherer, P. E. (2006) Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55, 1537-1545.   DOI
62 Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. and Lodish, H. F. (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746-26749.   DOI
63 Sereflican, B., Goksugur, N., Bugdayci, G., Polat, M. and Haydar Parlak, A. (2016) Serum visfatin, adiponectin, and tumor necrosis factor alpha (TNF-α) levels in patients with psoriasis and their correlation with disease severity. Acta Dermatovenerol. Croat. 24, 13-19.
64 Shapiro, L. and Scherer, P. E. (1998) The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr. Biol. 8, 335-338.   DOI
65 Shibata, S., Tada, Y., Hau, C. S., Mitsui, A., Kamata, M., Asano, Y., Sugaya, M., Kadono, T., Masamoto, Y., Kurokawa, M., Yamauchi, T., Kubota, N., Kadowaki, T. and Sato, S. (2015) Adiponectin regulates psoriasiform skin inflammation by suppressing IL-17 production from γδ-T cells. Nat. Commun. 6, 7687.   DOI
66 Sjerobabski-Masnec, I. and Situm, M. (2010) Skin aging. Acta Clin. Croat. 49, 515-518.
67 Steffens, S. and Mach, F. (2008) Adiponectin and adaptive immunity: linking the bridge from obesity to atherogenesis. Circ. Res. 102, 140-142.   DOI
68 Waki, H., Yamauchi, T., Kamon, J., Kita, S., Ito, Y., Hada, Y., Uchida, S., Tsuchida, A., Takekawa, S. and Kadowaki, T. (2005) Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology 146, 790-796.   DOI
69 Withers, S. B., Forman, R., Meza-Perez, S., Sorobetea, D., Sitnik, K., Hopwood, T., Lawrence, C. B., Agace, W. W., Else, K. J., Heagerty, A. M., Svensson-Frej, M. and Cruickshank, S. M. (2017) Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Sci. Rep. 7, 44571.   DOI
70 Wolf, A. M., Wolf, D., Rumpold, H., Enrich, B. and Tilg, H. (2004) Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 323, 630-635.   DOI
71 Woodley, D. T. (2017) Distinct fibroblasts in the papillary and reticular dermis: implications for wound healing. Dermatol. Clin. 35, 95-100.   DOI
72 Wulster-Radcliffe, M. C., Ajuwon, K. M., Wang, J., Christian, J. A. and Spurlock, M. E. (2004) Adiponectin differentially regulates cytokines in porcine macrophages. Biochem. Biophys. Res. Commun. 316, 924-929.   DOI
73 Yamashita, T., Lakota, K., Taniguchi, T., Yoshizaki, A., Sato, S., Hong, W., Zhou, X., Sodin-Semrl, S., Fang, F., Asano, Y. and Varga, J. (2018) An orally-active adiponectin receptor agonist mitigates cutaneous fibrosis, inflammation and microvascular pathology in a murine model of systemic sclerosis. Sci. Rep. 8, 11843.   DOI
74 Yoo, J. A., Yu, E., Park, S. H., Oh, S. W., Kwon, K., Park, S. J., Kim, H., Yang, S., Park, J. Y., Cho, J. Y., Kim, Y. J. and Lee, J. (2020) Blue light irradiation induces human keratinocyte cell damage via transient receptor potential vanilloid 1 (TRPV1) regulation. Oxid. Med. Cell. Longev. 2020, 8871745.
75 Zeng, Q., Macri, L. K., Prasad, A., Clark, R. A. F., Zeugolis, D. I., Hanley, C., Garcia, Y., Pandit, A., Leavesley, D. I., Stupar, D., Fernandez, M. L., Fan, C. and Upton, Z. (2017) 6.20 Skin tissue engineering. In Comprehensive Biomaterials II (P. Ducheyne, Ed.), pp. 334-382. Elsevier, Oxford.
76 Wilk, S., Jenke, A., Stehr, J., Yang, C. A., Bauer, S., Goldner, K., Kotsch, K., Volk, H. D., Poller, W., Schultheiss, H. P., Skurk, C. and Scheibenbogen, C. (2013) Adiponectin modulates NK-cell function. Eur. J. Immunol. 43, 1024-1033.   DOI
77 Yamamoto, R., Ueki, S., Moritoki, Y., Kobayashi, Y., Oyamada, H., Konno, Y., Tamaki, M., Itoga, M., Takeda, M., Ito, W. and Chihara, J. (2013) Adiponectin attenuates human eosinophil adhesion and chemotaxis: implications in allergic inflammation. J. Asthma 50, 828-835.   DOI
78 Lago, R., Gomez, R., Otero, M., Lago, F., Gallego, R., Dieguez, C., Gomez-Reino, J. J. and Gualillo, O. (2008) A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthritis Cartilage 16, 1101-1109.   DOI
79 Cichorek, M., Wachulska, M., Stasiewicz, A. and Tyminska, A. (2013) Skin melanocytes: biology and development. Postepy Dermatol. Alergol. 30, 30-41.
80 Diez, J. J. and Iglesias, P. (2003) The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol. 148, 293-300.   DOI
81 Driskell, R. R. and Watt, F. M. (2015) Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 25, 92-99.   DOI
82 Fang, X. and Sweeney, G. (2006) Mechanisms regulating energy metabolism by adiponectin in obesity and diabetes. Biochem. Soc. Trans. 34, 798-801.   DOI
83 Gerkowicz, A., Pietrzak, A., Szepietowski, J. C., Radej, S. and Chodorowska, G. (2012) Biochemical markers of psoriasis as a metabolic disease. Folia Histochem. Cytobiol. 50, 155-170.   DOI
84 Hong, S. P., Seo, H. S., Shin, K. O., Park, K., Park, B. C., Kim, M. H., Park, M., Kim, C. D. and Seo, S. J. (2019) Adiponectin enhances human keratinocyte lipid synthesis via SIRT1 and nuclear hormone receptor signaling. J. Invest. Dermatol. 139, 573-582.   DOI
85 Glaser, R., Navid, F., Schuller, W., Jantschitsch, C., Harder, J., Schroder, J. M., Schwarz, A. and Schwarz, T. (2009) UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J. Allergy Clin. Immunol. 123, 1117-1123.   DOI
86 Cheng, X., Folco, E. J., Shimizu, K. and Libby, P. (2012) Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ T cells. J. Biol. Chem. 287, 36896-36904.   DOI
87 Akazawa, Y., Sayo, T., Sugiyama, Y., Sato, T., Akimoto, N., Ito, A. and Inoue, S. (2011) Adiponectin resides in mouse skin and upregulates hyaluronan synthesis in dermal fibroblasts. Connect. Tissue Res. 52, 322-328.   DOI
88 Cappellano, G., Morandi, E. M., Rainer, J., Grubwieser, P., Heinz, K., Wolfram, D., Bernhard, D., Lobenwein, S., Pierer, G. and Ploner, C. (2018) Human macrophages preferentially infiltrate the superficial adipose tissue. Int. J. Mol. Sci. 19, 1404.   DOI
89 Chandran, M., Phillips, S. A., Ciaraldi, T. and Henry, R. R. (2003) Adiponectin: more than just another fat cell hormone? Diabetes Care 26, 2442-2450.   DOI
90 Stochmal, A., Czuwara, J., Zaremba, M. and Rudnicka, L. (2020) Altered serum level of metabolic and endothelial factors in patients with systemic sclerosis. Arch. Dermatol. Res. 312, 453-458.   DOI
91 Sun, Y. and Lodish, H. F. (2010) Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration. PLoS ONE 5, e11987.   DOI
92 Li, D., Tsang, J. Y., Peng, J., Ho, D. H., Chan, Y. K., Zhu, J., Lui, V. C., Xu, A., Lamb, J. R., Tam, P. K. and Chen, Y. (2012) Adiponectin mediated MHC class II mismatched cardiac graft rejection in mice is IL-4 dependent. PLoS ONE 7, e48893.   DOI
93 Lynch, M. D. and Watt, F. M. (2018) Fibroblast heterogeneity: implications for human disease. J. Clin. Invest. 128, 26-35.   DOI
94 Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y. and Matsubara, K. (1996) cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286-289.   DOI
95 Takahashi, H. and Iizuka, H. (2012) Psoriasis and metabolic syndrome. J. Dermatol. 39, 212-218.   DOI