• Title/Summary/Keyword: Adaptive Learning

Search Result 990, Processing Time 0.026 seconds

User Model Expansion for Adaptive Learning in Ubiquitous Environment (유비쿼터스 환경에서 적응적 학습을 위한 사용자 모델 확장)

  • Jeong, Hwa-Young;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.278-283
    • /
    • 2010
  • In this paper, we designed and proposed framework of extended user model to support student tailored learning in ubiquitous environment. For the purpose, existents model that is domain model, user model, adaptation model and interaction model connected to LMS(Learning Management System) and LCMS(Learning Contents Management System). Students information management process that is extended user model is in between LMS and adaptive learning system. And the process connected u-LMS to use u-learning. u-LMS and u-LCMS could support the learning contents through exchange the contents according to connect and request from the students.

EER-ASSL: Combining Rollback Learning and Deep Learning for Rapid Adaptive Object Detection

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4776-4794
    • /
    • 2020
  • We propose a rapid adaptive learning framework for streaming object detection, called EER-ASSL. The method combines the expected error reduction (EER) dependent rollback learning and the active semi-supervised learning (ASSL) for a rapid adaptive CNN detector. Most CNN object detectors are built on the assumption of static data distribution. However, images are often noisy and biased, and the data distribution is imbalanced in a real world environment. The proposed method consists of collaborative sampling and EER-ASSL. The EER-ASSL utilizes the active learning (AL) and rollback based semi-supervised learning (SSL). The AL allows us to select more informative and representative samples measuring uncertainty and diversity. The SSL divides the selected streaming image samples into the bins and each bin repeatedly transfers the discriminative knowledge of the EER and CNN models to the next bin until convergence and incorporation with the EER rollback learning algorithm is achieved. The EER models provide a rapid short-term myopic adaptation and the CNN models an incremental long-term performance improvement. EER-ASSL can overcome noisy and biased labels in varying data distribution. Extensive experiments shows that EER-ASSL obtained 70.9 mAP compared to state-of-the-art technology such as Faster RCNN, SSD300, and YOLOv2.

Effects of AI-Based Personalized Adaptive Learning System in Higher Education (인공지능 기반으로 맞춤 및 적응형 학습 시스템의 고등 교육에서의 적용효과)

  • Cho, Yooncheong
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.4
    • /
    • pp.249-263
    • /
    • 2022
  • The purpose of this study is to investigate the effects of assessment by adopting adaptive learning in higher education that are rarely examined in previous studies. In particular, this study applied research questions: 1) How does technical perception, perceived contents and features, and perceived integration of the AI-based adaptive system with lecture affect overall satisfaction, overall effectiveness, overall usefulness, overall motivation for the study, and intention to use it with other classes? 2) How do overall satisfaction, overall effectiveness, overall usefulness, motivation for the class, and intention to use affect loyalty on the AI-based adaptive system? This study conducted online surveys after the completion of the classes adopted AI-based adaptive learning system, ALEKS. This study applied ANOVA, regression, and factor analyses. The results of this study found that perceived integration of the AI-based adaptive learning system with the lectures on overall satisfaction, effectiveness, motivation, and intention to use for other classes showed significant with higher effect size. The results of this study provides implication that the AI-based learning system help improve learning outcomes in graduate level studies. The results provide policy and managerial implications that the AI-based adaptive learning system should improve better customer relationships in higher education.

Adaptive Learning Path Recommendation based on Graph Theory and an Improved Immune Algorithm

  • BIAN, Cun-Ling;WANG, De-Liang;LIU, Shi-Yu;LU, Wei-Gang;DONG, Jun-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2277-2298
    • /
    • 2019
  • Adaptive learning in e-learning has garnered researchers' interest. In it, learning resources could be recommended automatically to achieve a personalized learning experience. There are various ways to realize it. One of the realistic ways is adaptive learning path recommendation, in which learning resources are provided according to learners' requirements. This paper summarizes existing works and proposes an innovative approach. Firstly, a learner-centred concept map is created using graph theory based on the features of the learners and concepts. Then, the approach generates a linear concept sequence from the concept map using the proposed traversal algorithm. Finally, Learning Objects (LOs), which are the smallest concrete units that make up a learning path, are organized based on the concept sequences. In order to realize this step, we model it as a multi-objective combinatorial optimization problem, and an improved immune algorithm (IIA) is proposed to solve it. In the experimental stage, a series of simulated experiments are conducted on nine datasets with different levels of complexity. The results show that the proposed algorithm increases the computational efficiency and effectiveness. Moreover, an empirical study is carried out to validate the proposed approach from a pedagogical view. Compared with a self-selection based approach and the other evolutionary algorithm based approaches, the proposed approach produces better outcomes in terms of learners' homework, final exam grades and satisfaction.

Human Adaptive Device Development based on TD method for Smart Home

  • Park, Chang-Hyun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1072-1075
    • /
    • 2005
  • This paper presents that TD method is applied to the human adaptive devices for smart home with context awareness (or recognition) technique. For smart home, the very important problem is how the appliances (or devices) can adapt to user. Since there are many humans to manage home appliances (or devices), managing the appliances automatically is difficult. Moreover, making the users be satisfied by the automatically managed devices is much more difficult. In order to do so, we can use several methods, fuzzy controller, neural network, reinforcement learning, etc. Though the some methods could be used, in this case (in dynamic environment), reinforcement learning is appropriate. Among some reinforcement learning methods, we select the Temporal Difference learning method as a core algorithm for adapting the devices to user. Since this paper assumes the environment is a smart home, we simply explained about the context awareness. Also, we treated with the TD method briefly and implement an example by VC++. Thereafter, we dealt with how the devices can be applied to this problem.

  • PDF

A new method to detect attacks on the Internet of Things (IoT) using adaptive learning based on cellular learning automata

  • Dogani, Javad;Farahmand, Mahdieh;Daryanavard, Hassan
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.155-167
    • /
    • 2022
  • The Internet of Things (IoT) is a new paradigm that connects physical and virtual objects from various domains such as home automation, industrial processes, human health, and monitoring. IoT sensors receive information from their environment and forward it to their neighboring nodes. However, the large amounts of exchanged data are vulnerable to attacks that reduce the network performance. Most of the previous security methods for IoT have neglected the energy consumption of IoT, thereby affecting the performance and reducing the network lifetime. This paper presents a new multistep routing protocol based on cellular learning automata. The network lifetime is improved by a performance-based adaptive reward and fine parameters. Nodes can vote on the reliability of their neighbors, achieving network reliability and a reasonable level of security. Overall, the proposed method balances the security and reliability with the energy consumption of the network.

An Analysis of Types and Contents on Mathmatics Learning Application (수학 학습용 애플리케이션 유형 및 내용 분석)

  • Huh, Nan
    • East Asian mathematical journal
    • /
    • v.33 no.4
    • /
    • pp.413-429
    • /
    • 2017
  • This study is a basic study for developing a mathematical learning application program that can be used in smart devices for adaptive learning. We selected 20 mathematical learning applications including middle school contents and analyzed learning types. And we analyzed the contents and the learning process. As a result, most learning types of mathematics learning applications were problem-centered. Contents analysis results showed that the most applications have achievement goals. The factors that induce interest in learning were lacking and feedback was not provided sufficiently. Analysis of the learning process showed that most of the math learning applications were classified according to their purpose and characteristics.

Understanding Technology-Enhanced Construction Project Delivery: perspective from expansive learning and adaptive expertise

  • Sackey, Enoch;Kwadzo, Dzifa A.M.
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.3
    • /
    • pp.26-38
    • /
    • 2017
  • The architecture, engineering, and construction (AEC) industry is yet to formulate a holistic strategy to realign the evolving technological infrastructures with organisational ambitions and adaptive knowledge of the workforce. This study attempts to create an understanding of the underlying processes adopted by technology-enhanced construction organisations to disseminate and maintain knowledge within the workforce in order to keep pace with the evolving construction technologies. The study adopted expansive learning and adaptive expertise constructs to help better explain workplace learning support structures for organisational effectiveness in a turbulent situation. The two theories were tailored to empirically evaluate three case study construction organisations that have embarked on technology-enabled organisational changes. The study concluded on the creation of a facilitating workplace learning environment to enable the workforce to adapt into and resolve any inherent contradictions and cognitive ambiguities of the changing organisational conditions. This could ensure that novel and conflicting features of the emerging technologies can be adapted across the myriad multi-functional project activities in order to expand the frontiers of the technological capabilities to address the eminent issues confronting the AEC sector.

A Study on the Reconstruction of a Frame Based Speech Signal through Dictionary Learning and Adaptive Compressed Sensing (Adaptive Compressed Sensing과 Dictionary Learning을 이용한 프레임 기반 음성신호의 복원에 대한 연구)

  • Jeong, Seongmoon;Lim, Dongmin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1122-1132
    • /
    • 2012
  • Compressed sensing has been applied to many fields such as images, speech signals, radars, etc. It has been mainly applied to stationary signals, and reconstruction error could grow as compression ratios are increased by decreasing measurements. To resolve the problem, speech signals are divided into frames and processed in parallel. The frames are made sparse by dictionary learning, and adaptive compressed sensing is applied which designs the compressed sensing reconstruction matrix adaptively by using the difference between the sparse coefficient vector and its reconstruction. Through the proposed method, we could see that fast and accurate reconstruction of non-stationary signals is possible with compressed sensing.

Adaptive Learning Control fo rUnknown Monlinear Systems by Combining Neuro Control and Iterative Learning Control (뉴로제어 및 반복학습제어 기법을 결합한 미지 비선형시스템의 적응학습제어)

  • 최진영;박현주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.9-15
    • /
    • 1998
  • This paper presents an adaptive learning control method for unknown nonlinear systems by combining neuro control and iterative learning control techniques. In the present control system, an iterative learning controller (ILC) is used for a process of short term memory involved in a temporary adaptive and learning manipulation and a short term storage of a specific temporary action. The learning gain of the iterative learning law is estimated by using a neural network for an unknown system except relative degrees. The control informations obtained by ILC are transferred to a long term memory-based feedforward neuro controller (FNC) and accumulated in it in addition to the previously stored infonnations. This scheme is applied to a two link robot manipulator through simulations.

  • PDF