• Title/Summary/Keyword: Accumulation Mode

Search Result 143, Processing Time 0.027 seconds

Characteristic Analysis of Pollutant Emission from Diesel Locomotive Engine (디젤기관차 엔진에서 배출되는 오염물질의 특성 분석)

  • 박덕신;정우성;정병철;김동술
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.561-566
    • /
    • 2002
  • As the air pollution caused by diesel vehicles goes worse, so non-road vehicles exhaust gas standards are more strict in an foreign countries. There is growing evidence that diesel vehicles could play the important role in determining health effects. Most of the particle number emitted by diesel engines is in the nanopaticle range, D$\_$p/ < 50nm, while most of the mass is in the accumulation mode, 50nm < D$\_$p/ < 1000nm range. The aim of this work was to investigate pollutants in the exhaust of railroad diesel rolling stock under load tests.

  • PDF

Characterizations of Interface-state Density between Top Silicon and Buried Oxide on Nano-SOI Substrate by using Pseudo-MOSFETs

  • Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • The interface-states between the top silicon layer and buried oxide layer of nano-SOI substrate were developed. Also, the effects of thermal treatment processes on the interface-state distributions were investigated for the first time by using pseudo-MOSFETs. We found that the interface-state distributions were strongly influenced by the thermal treatment processes. The interface-states were generated by the rapid thermal annealing (RTA) process. Increasing the RTA temperature over $800^{\circ}C$, the interface-state density considerably increased. Especially, a peak of interface-states distribution that contributes a hump phenomenon of subthreshold curve in the inversion mode operation of pseudo-MOSFETs was observed at the conduction band side of the energy gap, hut it was not observed in the accumulation mode operation. On the other hand, the increased interface-state density by the RTA process was effectively reduced by the relatively low temperature annealing process in a conventional thermal annealing (CTA) process.

Simplified DC Calculation Method for Simplified Depth Coding Mode of 3D High Efficiency Video Coding

  • Jo, Hyunho;Lee, Jin Young;Choi, Byeongdoo;Sim, Donggyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.139-143
    • /
    • 2014
  • This paper proposes a simplified DC calculation method for simplified depth coding (SDC) mode of 3D High Efficiency Video Coding (3D-HEVC) to reduce the computational complexity. For the computational complexity reduction, the current reference software of 3D-HEVC employs reference samples sub-sampling method. However, accumulation, branch, and division operations are still utilized and these operations increase computational complexity. The proposed method calculates DC value without those operations. The experimental results show that the proposed method achieves 0.1% coding gain for synthesized views in common test condition (CTC) with the significantly reduced number of computing operations.

Enhanced Common-Mode Noise Rejection Method Based on Impedance Mismatching Compensation for Wireless Capsule Endoscopy Systems

  • Hwang, Won-Jun;Kim, Ki-Yun;Choi, Hyung-Jin
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.637-645
    • /
    • 2015
  • Common-mode noise (CMN) is an unresolved problem in wireless capsule endoscopy (WCE) systems. In a WCE system, CMN originates from various electric currents found within the human body or external interference sources and causes critical demodulation performance degradation. The differential operation, a typical method for the removal of CMN rejection, can remove CMN by subtracting two signals simultaneously received by two reception sensors attached to a human body. However, when there is impedance mismatching between the two reception sensors, the differential operation method cannot completely remove CMN. Therefore, to overcome this problem, we propose an enhanced CMN rejection method. The proposed method performs not only subtraction but also addition between two received signals. Then a CMN ratio can be estimated by sufficient accumulation of division operation outcomes between the subtraction and addition outputs during the guard period. Finally, we can reject the residual CMN by combining the subtraction and addition outputs.

Antibacterial Mode of Action of β-Amyrin Promotes Apoptosis-Like Death in Escherichia coli by Producing Reactive Oxygen Species

  • Giyeol Han;Dong Gun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1547-1552
    • /
    • 2022
  • β-Amyrin is a pentacyclic triterpene widely distributed in leaves and stems worldwide. The ability of β-amyrin to induce the production of reactive oxygen species (ROS) in microorganisms suggests its potential as an antimicrobial agent. Thus, this study aimed to elucidate the antibacterial mode of action of β-amyrin. We treated Escherichia coli cells with β-amyrin and found that it triggered ROS accumulation. Excessive stress caused by ROS, particularly hydroxyl radicals, induces glutathione (GSH) dysfunction. GSH protects cells from oxidative and osmotic stresses; thus, its dysfunction leads to membrane depolarization. The resultant change in membrane potential leads to the release of apoptotic proteins, such as caspases. The activated caspases-like protein promotes the cleavage of DNA into single strands, which is a hallmark of apoptosis-like death in bacteria. Apoptotic cells usually undergo events such as DNA fragmentation and phosphatidylserine exposure, differentiating them from necrotic cells, and the cells treated with β-amyrin in this study were positive for annexin V and negative for propidium iodide, indicating apoptosis-like death. In conclusion, our findings suggest that the antibacterial mode of action of β-amyrin involves the induction of ROS, which resulted in apoptosis-like death in E. coli.

In Vitro Antifungal Activity of HTI Isolated from Oriental Medicine, Hyungbangjihwang-tang (형방지황탕으로부터 분리된 HTI의 항진균활성에 대한 연구)

  • Sung, Woo-Sang;Seu, Young-Bae;Lee, Dong-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.273-279
    • /
    • 2009
  • Hyungbangjihwang-Tang (HT), an Oriental herbal formula, has been known to play a role which helps to recover vigor of human in the Orient. In this study, antifungal substance (HTI) was purified from the ethyl-acetate extracts of HT by using $SiO_2$ column chromatography and HPLC, and the antifungal effects of HTI and its mode of action were investigated. By using a broth micro-dilution assay, the activity of HTI was evaluated against fungi. HTI showed antifungal activities without hemolytic effect against human erythrocytes. To confirm antifungal activity of HTI, we examined the accumulation of intracellular trehalose as stress response on toxic agents and effect on dimorphic transition in Candida albicans. The results demonstrated that HTI induced the accumulation of intracellular trehalose and exerted its antifungal effect by disrupting the mycelial forms. To understand its antifungal mode of action, cell cycle analysis was performed with C. albicans, and the results showed HTI arrested the cell cycle at the S phase in yeast. The present study indicates that HTI has considerable antifungal activity, deserving further investigation for clinical applications.

Experimental Investigation of Nano-sized Particulate Matter Emission Characteristics under Engine Operating Conditions from Common Rail Diesel Engine (커먼레일 디젤엔진의 운전조건이 나노크기 입자상 물질 배출특성에 미치는 영향에 관한 실험적 연구)

  • Lee, Hyung-Min;Myung, Cha-Lee;Park, Sim-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.508-514
    • /
    • 2010
  • The objective of this work presented here was experimental study of steadystate and cold start exhaust nano-sized particle characteristics from common rail diesel engine. The effect of the diesel oxidation catalyst (DOC) on the particle number reduction was insignificant, however, particle number concentration levels were reduced by 3 orders of magnitude into the downstream of diesel particulate filter (DPF). In high speed and load conditions, natural regeneration of trapped particle occurred inside DPF and it was referable to increase particle number concentration. As fuel injection timing was shifted BTDC $6^{\circ}CA$ to ATDC $4^{\circ}CA$, particle number concentration level was slightly reduced, however particle number and size was increased at ATDC $9^{\circ}CA$. Nucleation type particle reduced and accumulation type particle was increased on EGR condition.

STUDY ON THE PREVENTION METHOD FOR HEAT ACCUMULATION FOR PERSONAL RAPID TRANSIT (PRT) VEHICLE UNDER BODY (PRT 차량하부 열부하 저감방안 도출 연구)

  • Kwon, S.B.;Song, J.H.;Kang, S.W.;Jeong, R.G.;Kim, H.B.;Lee, C.H.;Seo, D.K.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 2013
  • Personal Rapid Transit (PRT) is the emerging personal transport vehicle operating on the loop automatically. The PRT system utilize the electrical power from super capacity or battery, it is important to manage the power or energy. In this regards, the management of high temperature occurred by the operation of system is significantly important to prevent from serious damage of component. In this study, we studied the adequate shape of underbody which can reduce the heat accumulation by pickup coil and condenser using natural air cooling. We suggested the additional air pathway, air inlet and flow separator to decrease the temperature of the heat source components. It was found that suggested system can decrease the temperature of PRT under body by 16% during the static mode and by 10% during the running mode at 30km/h. It is expected that the findings of this study will feed into final design of newly built Korean PRT vehicle.

Electrical properties of nanoscale junctionless p-channel MuGFET at cryogenic temperature (극저온에서 나노스케일 무접합 p-채널 다중 게이트 FET의 전기적 특성)

  • Lee, Seung-Min;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1885-1890
    • /
    • 2013
  • In this paper, the electrical properties of nanoscale junctionless p-channel MuGFET at cryogenic temperature have been analyzed experimentally. The experiment was performed using a cryogenic probe station which uses the liquid Helium. It has been observed that the drain current oscillation at low drain voltage and cryogenic temperature was more pronounced in junctionless transistor than in accumulation mode transistor. The reason for more marked oscillation is due to the smaller electrical cross section area of the inversion channel which is formed at the center of silicon film in junctionless transistor. It was also observed that the drain current and maximum transconductance were increased as the measurement temperature increased. This is resulted from the increase of hole mobility and the decrease of the threshold voltage as the measurement temperature increases. The drain current oscillation due to the quantum effects can be occurred up to the room temperature when the device size scales down to the nanometer level.

Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea

  • Park, Seungshik;Yu, Geun-Hye
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.159-172
    • /
    • 2019
  • To investigate the influence of pollution events on the chemical composition and formation processes of aerosol particles, 24-h integrated size-segregated particulate matter (PM) was collected during the fall season at an urban site of Gwangju, Korea and was used to determine the concentrations of mass, water-soluble organic carbon (WSOC) and ionic species. Furthermore, black carbon (BC) concentrations were observed with an aethalometer. The entire sampling period was classified into four periods, i.e., typical, pollution event I, pollution event II, and an Asian dust event. Stable meteorological conditions (e.g., low wind speed, high surface pressure, and high relative humidity) observed during the two pollution events led to accumulation of aerosol particles and increased formation of secondary organic and inorganic aerosol species, thus causing $PM_{2.5}$ increase. Furthermore, these stable conditions resulted in the predominant condensation or droplet mode size distributions of PM, WSOC, $NO_3{^-}$, and $SO{_4}^{2-}$. However, difference in the accumulation mode size distributions of secondary water-soluble species between pollution events I and II could be attributed to the difference in transport pathways of air masses from high-pollution regions and the formation processes for the secondary chemical species. The average absorption ${\AA}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950}$) for 370-950 nm wavelengths > 1.0 indicates that the BC particles from traffic emissions were likely mixed with light absorbing brown carbon (BrC) from biomass burning (BB) emissions. It was found that light absorption by BrC in the near UV range was affected by both secondary organic aerosol and BB emissions. Overall, the pollution events observed during fall at the study site can be due to the synergy of unfavorable meteorological conditions, enhanced secondary formation, local emissions, and long-range transportation of air masses from upwind polluted areas.