Browse > Article
http://dx.doi.org/10.4014/jmb.2209.09040

Antibacterial Mode of Action of β-Amyrin Promotes Apoptosis-Like Death in Escherichia coli by Producing Reactive Oxygen Species  

Giyeol Han (School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, Kyungpook National University)
Dong Gun Lee (School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.12, 2022 , pp. 1547-1552 More about this Journal
Abstract
β-Amyrin is a pentacyclic triterpene widely distributed in leaves and stems worldwide. The ability of β-amyrin to induce the production of reactive oxygen species (ROS) in microorganisms suggests its potential as an antimicrobial agent. Thus, this study aimed to elucidate the antibacterial mode of action of β-amyrin. We treated Escherichia coli cells with β-amyrin and found that it triggered ROS accumulation. Excessive stress caused by ROS, particularly hydroxyl radicals, induces glutathione (GSH) dysfunction. GSH protects cells from oxidative and osmotic stresses; thus, its dysfunction leads to membrane depolarization. The resultant change in membrane potential leads to the release of apoptotic proteins, such as caspases. The activated caspases-like protein promotes the cleavage of DNA into single strands, which is a hallmark of apoptosis-like death in bacteria. Apoptotic cells usually undergo events such as DNA fragmentation and phosphatidylserine exposure, differentiating them from necrotic cells, and the cells treated with β-amyrin in this study were positive for annexin V and negative for propidium iodide, indicating apoptosis-like death. In conclusion, our findings suggest that the antibacterial mode of action of β-amyrin involves the induction of ROS, which resulted in apoptosis-like death in E. coli.
Keywords
${\beta}$-amyrin; apoptosis-like death; reactive oxygen species;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Hong Y, J Zeng, X Wang, K Drlica, X Zhao. 2019. Post-stress bacterial cell death mediated by reactive oxygen species. Proc. Natl. Acad. Sci. USA 116: 10064-10071.   DOI
2 Te Winkel, JD, DA Gray, KH Seistrup, LW Hamoen, H Strahl. 2016. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front. Cell Dev. Biol. 4: 29.
3 Gough NR. 2011. Stressing bacteria to death. Sci. Signal. 4: ec164.
4 Asplund-Samuelsson J. 2015. The art of destruction: revealing the proteolytic capacity of bacterial caspase homologs. Mol. Microbiol. 98: 1-6.   DOI
5 Bayles KW. 2014. Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12: 63-69.   DOI
6 Shlomovitz I, M Speir, M Gerlic. 2019. Flipping the dogma-phosphatidylserine in non-apoptotic cell death. Cell Commun. Signal. 17: 139.
7 Jager S, H Trojan, T Kopp, MN Laszczyk, A Scheffler. 2009. Pentacyclic triterpene distribution in various plants-rich sources for a new group of multi-potent plant extracts. Molecules 14: 2016-2031.   DOI
8 Cheng Z, Y Li, X Zhu, K Wang, Y Ali, W Shu, et al. 2021. The potential application of pentacyclic triterpenoids in the prevention and treatment of retinal diseases. Planta Med. 87: 511-527.   DOI
9 Ghiulai R, OJ Rosca, DS Antal, M Mioc, A Mioc, R Racoviceanu, et al., 2020. Tetracyclic and pentacyclic triterpenes with high therapeutic efficiency in wound healing approaches. Molecules 25: 5557.
10 Wu P, B Tu, J Liang, S Guo, N Cao, S Chen, et al. 2021. Synthesis and biological evaluation of pentacyclic triterpenoid derivatives as potential novel antibacterial agents. Bioorg. Chem. 109: 104692.
11 Kwun MS, HJ Lee, DG Lee, 2021. β-amyrin-induced apoptosis in Candida albicans triggered by calcium. Fungal Biol. 125: 630-636.   DOI
12 Boar RB, J Allen. 1973. β-Amyrin triterpenoids. Phytochemistry 12: 2571-2578.   DOI
13 Melo CM, KMMB Carvalho, JC de Sousa Neves, TC Morais, VS Rao, FA Santos, et al. 2010. α, β-amyrin, a natural triterpenoid ameliorates L-arginine-induced acute pancreatitis in rats. World J. Gastroenterol. 16: 4272-4280.   DOI
14 Zhao X, K Drlica. 2014. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 21: 1-6.   DOI
15 Fasnacht M, N Polacek. 2021. Oxidative stress in bacteria and the central dogma of molecular biology. Front. Mol. Biosci. 8: 671037.
16 Haanen C, I Vermes. 1995. Apoptosis and inflammation. Mediat. Inflamm. 4: 5-15.   DOI
17 Kim H, DG Lee. 2020. Nitric oxide-inducing genistein elicits apoptosis-like death via an intense SOS response in Escherichia coli. Appl. Microbiol. Biotechnol.104: 10711-10724.   DOI
18 Okoye NN, DL Ajaghaku, HN Okeke, EE Ilodigwe, CS Nworu, FBC Okoye. 2014. beta-Amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm. Biol. 52:1478-1486.   DOI
19 Elmore S 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35: 495-516.   DOI
20 Kwon DH, H-J Cha, H Lee, S-H Hong, C Park, S-H Park, et al. 2019. Protective effect of glutathione against oxidative stress-induced cytotoxicity in RAW 264.7 macrophages through activating the nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway. Antioxidants 8: 82.
21 Rahman I, A Kode, SK Biswas. 2019. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc.1: 3159-3165.   DOI
22 Goldstein EJ. 1987. Norfloxacin, a fluoroquinolone antibacterial agent: classification, mechanism of action, and in vitro activity. Am. J. Med. 82: 3-17.   DOI
23 Suski JM, M Lebiedzinska, M Bonora, P Pinton, J Duszynski, MR Wieckowski. 2012. Relation between mitochondrial membrane potential and ROS formation, in Mitochondrial bioenergetics. pp. 183-205. 2012, Springer.
24 Moungjaroen J, U Nimmannit, PS Callery, L Wang, N Azad, V Lipipun, et al., 2006. Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation. J. Pharmacol. Exp. Ther. 319: 1062-1069.   DOI
25 Edgington-Mitchell, LE, M Bogyo, Detection of active caspases during apoptosis using fluorescent activity-based probes, in Programmed Cell Death. pp. 27-39. 2016, Springer.
26 Bortner CD, NB Oldenburg, JA Cidlowski. 1995. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 5: 21-26.   DOI
27 Janicke RU, ML Sprengart, MR Wati, AG Porter. 1998. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273: 9357-9360.   DOI
28 Kyrylkova K, S Kyryachenko, M Leid, C Kioussi. 2012. Detection of apoptosis by TUNEL assay, in Odontogenesis. pp. 41-47. Springer.
29 Marino, G, G Kroemer. 2013. Mechanisms of apoptotic phosphatidylserine exposure. Cell Res. 23: 1247-1248.   DOI
30 Saraste A, K Pulkki. 2000. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 45: 528-537.   DOI
31 Crowley LC, BJ Marfell, AP Scott, NJ Waterhouse. 2016. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb. Protoc. 2016. doi: 10.1101/pdb.prot087288..   DOI
32 Safayhi H, E-R Sailer. 1997. Anti-inflammatory actions of pentacyclic triterpenes. Planta Med. 63: 487-493.   DOI
33 Hernandez-Vazquez, L, J Palazon Barandela, A Navarro-Ocana. 2012. The pentacyclic triterpenes α, β-amyrins: a review of sources and biological activities. Chapter 23 in: Rao, Venketeshwer. Phytochemicals: A Global Perspective of Their Role in Nutrition and Health. IntechOpen. ISBN: 978-953-51-4317-8. DOI: 10.5772/1387 pp. 487-502., 2012.   DOI
34 Memar MY, R Ghotaslou, M Samiei, K Adibkia. 2018. Antimicrobial use of reactive oxygen therapy: current insights. Infect. Drug Resist. 11: 567-576.   DOI
35 Ezraty B, A Gennaris, F Barras, J-F Collet. 2017. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 15: 385-396.   DOI
36 Brookes PS, Y Yoon, JL Robotham, M Anders, S-S Sheu. 2004. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 287: C817-833.   DOI
37 Sheng H, K Nakamura, T Kanno, K Sasaki, Y Niwano. 2015. Microbicidal activity of artificially generated hydroxyl radicals, pp. 203-215. in Interface Oral Health Science 2014. Springer, Tokyo.
38 Masip L, K Veeravalli, G Georgiou. 2006. The many faces of glutathione in bacteria. Antioxid. Redox Signal. 8: 753-762.   DOI