• Title/Summary/Keyword: A-generating function

Search Result 733, Processing Time 0.021 seconds

Generating functions for t-norms

  • Kim, Yong-Chan;Ko, Jung-Mi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.140-144
    • /
    • 2005
  • We investigate the P-generating functions, L-generating functions, and A-generating function, respectively induced by product t-norms, Lukasiewicz t-norms and additive semi-groups. Furthermore, we investigate the relations among them.

Some Generating Relations of Extended Mittag-Leffler Functions

  • Khan, Nabiullah;Ghayasuddin, Mohd;Shadab, Mohd
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.325-333
    • /
    • 2019
  • Motivated by the results on generating functions investigated by H. Exton and many other authors, we derive certain (presumably) new generating functions for generalized Mittag-Leffler-type functions. Specifically, we introduce a new class of generating relations (which are partly bilateral and partly unilateral) involving the generalized Mittag-Leffler function. Also we present some special cases of our main result.

GENERATING FUNCTIONS FOR THE EXTENDED WRIGHT TYPE HYPERGEOMETRIC FUNCTION

  • Jana, Ranjan Kumar;Maheshwari, Bhumika;Shukla, Ajay Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.75-84
    • /
    • 2017
  • In recent years, several interesting families of generating functions for various classes of hypergeometric functions were investigated systematically. In the present paper, we introduce a new family of extended Wright type hypergeometric function and obtain several classes of generating relations for this extended Wright type hypergeometric function.

A NOTE OF THE MODIFIED BERNOULLI POLYNOMIALS AND IT'S THE LOCATION OF THE ROOTS

  • LEE, Hui Young
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.3_4
    • /
    • pp.291-300
    • /
    • 2020
  • This type of polynomial is a generating function that substitutes eλt for et in the denominator of the generating function for the Bernoulli polynomial, but polynomials by using this generating function has interesting properties involving the location of the roots. We define these generation functions and observe the properties of the generation functions.

ENUMERATION OF GRAPHS WITH GIVEN WEIGHTED NUMBER OF CONNECTED COMPONENTS

  • Song, Joungmin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1873-1882
    • /
    • 2017
  • We give a generating function for the number of graphs with given numerical properties and prescribed weighted number of connected components. As an application, we give a generating function for the number of q-partite graphs of given order, size and number of connected components.

SIMPLIFYING COEFFICIENTS IN A FAMILY OF ORDINARY DIFFERENTIAL EQUATIONS RELATED TO THE GENERATING FUNCTION OF THE MITTAG-LEFFLER POLYNOMIALS

  • Qi, Feng
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.417-423
    • /
    • 2019
  • In the paper, by virtue of the $Fa{\grave{a}}$ di Bruno formula, properties of the Bell polynomials of the second kind, and the Lah inversion formula, the author simplifies coefficients in a family of ordinary differential equations related to the generating function of the Mittag-Leffler polynomials.

OME PROPERTIES OF THE BERNOULLI NUMBERS OF THE SECOND KIND AND THEIR GENERATING FUNCTION

  • Qi, Feng;Zhao, Jiao-Lian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1909-1920
    • /
    • 2018
  • In the paper, the authors find a common solution to three series of differential equations related to the generating function of the Bernoulli numbers of the second kind and present a recurrence relation, an explicit formula in terms of the Stirling numbers of the first kind, and a determinantal expression for the Bernoulli numbers of the second kind.

ON THE GENOTYPE FREQUENCIES AND GENERATING FUNCTION FOR FREQUENCIES IN A DYPLOID MODEL

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.75-80
    • /
    • 2021
  • For a locus with two alleles (IA and IB), the frequencies of the alleles are represented by $$p=f(I^A)={\frac{2N_{AA}+N_{AB}}{2N} },\;q=f(I^B)={\frac{2N_{BB}+N_{AB}}{2N}}$$ where NAA, NAB and NBB are the numbers of IA IA, IA IB and IB IB respectively and N is the total number of populations. The frequencies of the genotypes expected are calculated by using p2, 2pq and q2. So in this paper, we consider the method of whether some genotypes is in Hardy-Weinburg equilibrium. Also we calculate the probability generating function for the offspring number of genotype produced by a mating of the ith male and jth female under a diploid model of N population with N1 males and N2 females. Finally, we have conditional joint probability generating function of genotype frequencies.

ARITHMETIC PROPERTIES OF TRIANGULAR PARTITIONS

  • Kim, Byungchan
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.791-802
    • /
    • 2020
  • We obtain a two variable generating function for the number of triangular partitions. Using this generating function, we study arithmetic properties of a certain weighted count of triangular partitions. Finally, we introduce a rank-type function for triangular partitions, which gives a combinatorial explanation for a triangular partition congruence.