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SOME PROPERTIES OF THE BERNOULLI NUMBERS

OF THE SECOND KIND AND THEIR GENERATING

FUNCTION

Feng Qi and Jiao-Lian Zhao

Abstract. In the paper, the authors find a common solution to three
series of differential equations related to the generating function of the

Bernoulli numbers of the second kind and present a recurrence relation,

an explicit formula in terms of the Stirling numbers of the first kind, and
a determinantal expression for the Bernoulli numbers of the second kind.

1. Introduction

In number theory, the Bernoulli numbers of the second kind bn can be gen-
erated by

(1)
x

ln(1 + x)
=

∞∑
n=0

bnx
n.

They are also known as the Cauchy numbers of the first kind, the Gregory
coefficients, or logarithmic numbers. The first few Bernoulli numbers of the
second kind bn are

b0 = 1, b1 =
1

2
, b2 = − 1

12
, b3 =

1

24
, b4 = − 19

720
, b5 =

3

160
.

Before stating main results of this paper, we recall some known results pub-
lished in recent years about the Bernoulli numbers of the second kind bn as
follows.

In [6, p. 2], the Bernoulli numbers of the second kind bn for n ≥ 0 were
expressed as

(2) bn =
1

n!

n∑
k=0

s(n, k)

k + 1
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in terms of the Stirling numbers of the first kind s(n, k) which can be generated
by

[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x| < 1.

In [8, Theorem 3.1 and Corollary 2.3], by induction and other techniques,
the Bernoulli numbers of the second kind bn for n ≥ 2 were expressed by

bn = (−1)n

[
1

(n+ 1)!
+

1

n!

n∑
k=2

an,k − nan−1,k
k!

]
and the Stirling numbers of the first kind s(n, k) for n ≥ k ≥ 1 were expressed
by

s(n, k) = (−1)n+k(n− 1)!

n−1∑
`1=1

1

`1

`1−1∑
`2=1

1

`2
· · ·

`k−3−1∑
`k−2=1

1

`k−2

`k−2−1∑
`k−1=1

1

`k−1
,

where an,2 = (n− 1)! and, for n+ 1 ≥ i ≥ 3,

an,i = (i− 1)!(n− 1)!

n−1∑
`1=1

1

`1

`1−1∑
`2=1

1

`2
· · ·

`i−4−1∑
`i−3=1

1

`i−3

`i−3−1∑
`i−2=1

1

`i−2
.

In [10, Theorem 1.1], basing on some results in [8], the Bernoulli numbers
of the second kind bn for n ≥ 2 were similarly expressed as

(3) bn =
1

n!

n−1∑
k=1

(−1)k
s(n− 1, k)

(k + 1)(k + 2)
.

The Cauchy numbers of the second kind ck can be generated [3, p. 294] by

−t
(1− t) ln(1− t)

=

∞∑
n=0

cn
tn

n!

which is equivalent to

t

ln(1 + t)
= c0 +

∞∑
n=1

(−1)n(cn − ncn−1)
tn

n!
.

Hence, it follows that b0 = c0 = 1,

bn = (−1)n
[
cn
n!
− cn−1

(n− 1)!

]
, cn = n!

n∑
k=0

(−1)kbk, n ∈ N.

In [7, Theorem 2.1], the Cauchy numbers of the second kind cn were repre-
sented by the integral

(4) cn = n!

∫ ∞
0

du

u[π2 + (lnu)2](1 + u)n
, n ≥ 0.
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In [32, Theorem 1], making use of the Cauchy integral formula in the theory
of complex functions, the Bernoulli numbers of the second kind bn for n ∈ N
were represented by the integral

(5)

bn = (−1)n+1

∫ ∞
1

1

{[ln(t− 1)]2 + π2}tn
d t

= (−1)n+1

∫ ∞
0

1

[(lnu)2 + π2](1 + u)n
du.

Consequently, for n ∈ N, any one of the integral representations (4) and (5)
can be derived from another one.

With the help of (4) and (5) and by some properties of completely mono-
tonic functions (the Laplace transforms), some determinantal inequalities, some
product inequalities, the complete monotonicity, and the logarithmic convexity
for the Bernoulli numbers of the second kind bn and for the Cauchy numbers
of the second kind cn were established in [7, 32] respectively. For examples,

(1) the product inequalities∣∣∣∣∣
m∏
`=1

λ`!bλ`+1

∣∣∣∣∣ ≤
∣∣∣∣∣
m∏
`=1

µ`!bµ`+1

∣∣∣∣∣, m ∈ N

hold for all m-tuples λ = (λ1, λ2, . . . , λm) and µ = (µ1, µ2, . . . , µm) of
nonnegative integers such that

k∑
`=1

λ[`] ≤
k∑
`=1

µ[`], k = 1, 2, . . . ,m− 1

and
∑m
`=1 λ` =

∑m
`=1 µ`, where λ[1] ≥ λ[2] ≥ · · · ≥ λ[n] and µ[1] ≥

µ[2] ≥ · · · ≥ µ[m] are respectively the components of λ and µ in de-
creasing order;

(2) the infinite sequence {cn}n≥0 is logarithmically convex.

In this paper, we will find a common solution to three series of differential
equations related to the generating function x

ln(1+x) of the Bernoulli numbers

of the second kind bn and present a recurrence relation, an explicit formula
in terms of the Stirling numbers of the first kind s(n, k), and a determinantal
expression for the Bernoulli numbers of the second kind bn.

Our main results can be summarized as the following three theorems.

Theorem 1. For all n ≥ 2, the nonlinear ordinary differential equations

(6) F (n)(x) =
(−1)n

(1 + x)n
F (x)

x

n−1∑
r=0

(−1)r
(
n

r

)
(n− r − 1)!(1 + x)rF (r)(x)

have the same solution F (x) = x
ln(1+x) .
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Theorem 2. For n ∈ N, the Bernoulli numbers of the second kind bn satisfy
the recurrence relation

(7) bn = (−1)n+1
n−1∑
r=0

(−1)r

n− r + 1
br.

Theorem 3. For n ≥ 0, the Bernoulli numbers of the second kind bn can be
represented by

(8) bn =
1

n!

n∑
k=0

k∑
m=0

(−1)m
(
k

m

)
s(n+m,m)(

n+m
m

)
and

bn =
(−1)n

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 0 0

0
(
1
0

)−1!
2 1 · · · 0 0

0
(
2
0

)
2!
3

(
2
1

)−1!
2 · · · 0 0

...
...

...
. . .

...
...

0
(
n−2
0

) (−1)n−2(n−2)!
n−1

(
n−2
1

) (−1)n−3(n−3)!
n−2 · · · 1 0

0
(
n−1
0

) (−1)n−1(n−1)!
n

(
n−1
1

) (−1)n−2(n−2)!
n−1 · · ·

(
n−1
n−2
)−1!

2 1

0
(
n
0

) (−1)nn!
n+1

(
n
1

) (−1)n−1(n−1)!
n · · ·

(
n
n−2
)
2!
3

(
n
n−1
)−1!

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(9)

The differential equations

(10)

n∑
r=0

(−1)r

r!

[∫ 1

0

un−r

(1 + xu)n−r+1
du

]
F (r)(x) = 0, n ≥ 1

have the same solution F (x) = x
ln(1+x) .

2. Lemmas

In order to prove our main results, we recall several lemmas below.

Lemma 1. Let p = p(x) and q = q(x) 6= 0 be two differentiable functions.
Then
(11)

[
p(x)

q(x)

](k)
=

(−1)k

qk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p q 0 · · · 0 0
p′ q′ q · · · 0 0

p′′ q′′
(
2
1

)
q′ · · · 0 0

...
...

...
...

...
...

p(k−2) q(k−2)
(
k−2
1

)
q(k−3) · · · q 0

p(k−1) q(k−1)
(
k−1
1

)
q(k−2) · · ·

(
k−1
k−2
)
q′ q

p(k) q(k)
(
k
1

)
q(k−1) · · ·

(
k
k−2
)
q′′

(
k
k−1
)
q′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for k ≥ 0. In other words, the formula (11) can be rewritten as

(12)
dk

dxk

[
p(x)

q(x)

]
=

(−1)k

qk+1(x)

∣∣W(k+1)×(k+1)(x)
∣∣,
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where |W(k+1)×(k+1)(x)| denotes the determinant of the (k+1)× (k+1) matrix

W(k+1)×(k+1)(x) =
(
U(k+1)×1(x) V(k+1)×k(x)

)
,

the quantity U(k+1)×1(x) is a (k + 1) × 1 matrix whose elements u`,1(x) =

p(`−1)(x) for 1 ≤ ` ≤ k + 1, and V(k+1)×k(x) is a (k + 1) × k matrix whose
elements

vi,j(x) =


(
i− 1

j − 1

)
q(i−j)(x), i− j ≥ 0

0, i− j < 0

for 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ k.

Proof. This is a reformulation of a formula in [1, p. 40, Entry 5]. �

Lemma 2 ([2, p. 222, Theorem] and [34, Remark 3]). Let M0 = 1 and

Mn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1,1 m1,2 0 · · · 0 0
m2,1 m2,2 m2,3 · · · 0 0
m3,1 m3,2 m3,3 · · · 0 0

...
...

...
...

...
...

mn−2,1 mn−2,2 mn−2,3 · · · mn−2,n−1 0
mn−1,1 mn−1,2 mn−1,3 · · · mn−1,n−1 mn−1,n
mn,1 mn,2 mn,3 · · · mn,n−1 mn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for n ∈ N. Then the sequence Mn for n ≥ 0 satisfies M1 = m1,1 and

(13) Mn = mn,nMn−1 +

n−1∑
r=1

(−1)n−rmn,r

(
n−1∏
j=r

mj,j+1

)
Mr−1, n ≥ 2.

Lemma 3 ([3, p. 134, Theorem A] and [3, p. 139, Theorem C]). For n ≥ k ≥
0, the Bell polynomials of the second kind, or say, partial Bell polynomials,
denoted by Bn,k(x1, x2, . . . , xn−k+1), are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
.

The Faà di Bruno formula can be described in terms of the Bell polynomials of
the second kind Bn,k(x1, x2, . . . , xn−k+1) by

(14)
dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)(h(t)) Bn,k
(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
.

Lemma 4 ([3, p. 135]). For complex numbers a and b, we have

(15) Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1).



1914 F. QI AND J.-L. ZHAO

Lemma 5 ([11, Theorem 1.1]). For n ≥ k ≥ 0, we have
(16)

Bn,k

(
1!

2
,

2!

3
, . . . ,

(n− k + 1)!

n− k + 2

)
= (−1)n−k

1

k!

k∑
m=0

(−1)m
(
k

m

)
s(n+m,m)(

n+m
m

) .

3. Proofs of main results

We are now in a position to prove our main results as follows.

Proof of Theorem 1. For n ≥ 2, by the formulas (11) or (12) in Lemma 1, we
have [

x

ln(1 + x)

](n)
=

(−1)n

lnn+1(1 + x)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ln(1 + x) 0 · · · 0 0
1 1

1+x ln(1 + x) · · · 0 0

0 − 1
(1+x)2

(
2
1

)
1

1+x · · · 0 0
...

...
...

...
...

...

0 (−1)n−3(n−3)!
(1+x)n−2

(
n−2
1

) (−1)n−4(n−4)!
(1+x)n−3 · · · ln(1 + x) 0

0 (−1)n−2(n−2)!
(1+x)n−1

(
n−1
1

) (−1)n−3(n−3)!
(1+x)n−2 · · ·

(
n−1
n−2
)

1
1+x ln(1 + x)

0 (−1)n−1(n−1)!
(1+x)n

(
n
1

) (−1)n−2(n−2)!
(1+x)n−1 · · · −

(
n
n−2
)

1
(1+x)2

(
n
n−1
)

1
1+x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Denote the above (n + 1) × (n + 1) determinant by Mn+1. By the recurrence
relation (13), we have

(−1)n

lnn+1(1 + x)
Mn+1

=

(
n

n− 1

)
1

1 + x

(−1)n

lnn+1(1 + x)
Mn

+

n∑
r=2

(
n

r − 2

)
(n− r + 1)!

(1 + x)n−r+2

(−1)n

lnn+1(1 + x)
lnn−r+1(1 + x)Mr−1,

[
x

ln(1 + x)

](n)
= −

(
n

n− 1

)
1

1 + x

1

ln(1 + x)

[
x

ln(1 + x)

](n−1)
+

n∑
r=2

(
n

r − 2

)
(n− r + 1)!

(1 + x)n−r+2

(−1)n+r

ln(1 + x)

[
x

ln(1 + x)

](r−2)
,

[
x

ln(1 + x)

](n)
=

(−1)n

ln(1 + x)

n+1∑
r=2

(−1)r
(

n

r − 2

)
(n− r + 1)!

(1 + x)n−r+2

[
x

ln(1 + x)

](r−2)
.

The last equation above can be rewritten as the nonlinear ordinary differential
equations (6). The proof of Theorem 1 is complete. �
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Proof of Theorem 2. Taking the limit x → 0 in the last equation in the proof
of Theorem 1 and making use of the L’Hôpital rule give

lim
x→0

[
x

ln(1 + x)

](n)
= lim

x→0

(−1)n

ln(1 + x)

n+1∑
r=2

(
n

r − 2

)

× (−1)r(n− r + 1)!

(1 + x)n−r+2

[
x

ln(1 + x)

](r−2)
= (−1)n lim

x→0
(1 + x)

n+1∑
r=2

(−1)r
(

n

r − 2

)
(n− r + 1)!

×
(

1

(1 + x)n−r+2

[
x

ln(1 + x)

](r−1)
− n− r + 2

(1 + x)n−r+3

[
x

ln(1 + x)

](r−2))
= (−1)n lim

x→0
(1 + x)

n+1∑
r=2

(−1)r
(

n

r − 2

)
(n− r + 1)!

×
(

lim
x→0

1

(1 + x)n−r+2

[
x

ln(1 + x)

](r−1)
− lim
x→0

n− r + 2

(1 + x)n−r+3

[
x

ln(1 + x)

](r−2))
.

Further considering the generating function (1) yields

n!bn =

n+1∑
r=2

(−1)n+r
(

n

r − 2

)
(n− r + 1)![(r − 1)!br−1 − (n− r + 2)(r − 2)!br−2]

which can be rearranged as

bn = (−1)n
n+1∑
r=2

(−1)r
(

n

r − 2

)[
1(
n
r−1
)br−1 − 1(

n
r−2
)br−2]

= (−1)n
n+1∑
r=2

(−1)r
(

r − 1

n− r + 2
br−1 − br−2

)

= (−1)n

[
n+1∑
r=2

(−1)r
r − 1

n− r + 2
br−1 −

n+1∑
r=2

(−1)rbr−2

]

= (−1)n

[
n∑
r=1

(−1)r+1 r

n− r + 1
br −

n−1∑
r=0

(−1)rbr

]

= (−1)n

[
(−1)n+1nbn +

n−1∑
r=1

(−1)r+1 n+ 1

n− r + 1
br − b0

]
.

Therefore, we obtain the recurrence relation (7). The proof of Theorem 2 is
complete. �
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Proof of Theorem 3. It is not difficult to see that the generating function of
the Bernoulli numbers of the second kind bk can be written as t

ln(1+t) = 1
ln(1+t)

t

and[
ln(1 + t)

t

](`)
=

(
1

t

∫ t

0

1

1 + u
du

)(`)

=

(∫ 1

0

1

1 + tu
du

)(`)

=

∫ 1

0

(
1

1 + tu

)(`)

du =

∫ 1

0

(−1)``!u`

(1 + tu)`+1
du→ (−1)`

`!

`+ 1

as t→ 0. Making use of (14), (15), and (16) in sequence gives[
t

ln(1 + t)

](n)
=

n∑
k=0

(
1

v

)(k)

Bn,k
(
v′(t), v′′(t), . . . , v(n−k+1)(t)

)
=

n∑
k=0

(−1)kk!

vk+1
Bn,k

(
v′(t), v′′(t), . . . , v(n−k+1)(t)

)
→

n∑
k=0

(−1)kk! Bn,k

(
−1!

2
,

2!

3
, . . . ,

(−1)n−k+1(n− k + 1)!

n− k + 2

)

= (−1)n
n∑
k=0

(−1)kk! Bn,k

(
1!

2
,

2!

3
, . . . ,

(n− k + 1)!

n− k + 2

)

= (−1)n
n∑
k=0

(−1)kk!(−1)n−k
1

k!

k∑
m=0

(−1)m
(
k

m

)
s(n+m,m)(

n+m
m

)
=

n∑
k=0

k∑
m=0

(−1)m
(
k

m

)
s(n+m,m)(

n+m
m

)
as t→ 0, where v = v(t) = ln(1+t)

t . Hence, the formula (8) is proved.
Making use of the formulas (11) or (12) in Theorem 1 yields

(17)

[
t

ln(1 + t)

](n)
=

[
1

ln(1+t)
t

](n)

=
(−1)n

vn+1(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 v(t) 0 · · · 0 0
0 v′(t) v(t) · · · 0 0

0 v′′(t)
(
2
1

)
v′(t) · · · 0 0

...
...

...
...

...
...

0 v(n−2)(t)
(
n−2
1

)
v(n−3)(t) · · · v(t) 0

0 v(n−1)(t)
(
n−1
1

)
v(n−2)(t) · · ·

(
n−1
n−2
)
v′(t) v(t)

0 v(n)(t)
(
n
1

)
v(n−1)(t) · · ·

(
n
n−2
)
v′′(t)

(
n
n−1
)
v′(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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where v = v(t) = ln(1+t)
t . Letting t tend to 0 on both sides arrives at

n!bn = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 0 0
0 − 1

2 1 · · · 0 0
0 2

3 −1 · · · 0 0
...

...
...

...
...

...

0 (−1)n−2 (n−2)!
n−1

(
n−2
1

)
(−1)n−3 (n−3)!

n−2 · · · 1 0

0 (−1)n−1 (n−1)!
n

(
n−1
1

)
(−1)n−2 (n−2)!

n−1 · · · −n−12 1

0 (−1)n n!
n+1

(
n
1

)
(−1)n−1 (n−1)!

n · · · 2
3

(
n
n−2
)
−n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for n ≥ 0. The determinantal expression (9) follows readily.

Denoting the (n+ 1)× (n+ 1) determinant in (17) by Mn+1 and employing
the recurrence relation (13) reveal

Mn+1 =

(
n

n− 1

)
v′(t)Mn +

n∑
r=2

(−1)n−r+1

(
n

r − 2

)
v(n−r+2)(t)vn−r+1(t)Mr−1

for n ≥ 2, which can be rearranged as

(−1)n

vn+1(t)
Mn+1 = −

(
n

n− 1

)
v′(t)

v(x)

(−1)n−1

vn(t)
Mn

−
n∑
r=2

(
n

r − 2

)
v(n−r+2)(t)

v(t)

(−1)r−2

vr−1(t)
Mr−1,[

t

ln(1 + t)

](n)
= −

(
n

n− 1

)
v′(t)

v(x)

[
t

ln(1 + t)

](n)
−

n∑
r=2

(
n

r − 2

)
v(n−r+2)(t)

v(t)

[
t

ln(1 + t)

](r−2)
,

[
t

ln(1 + t)

](n)
= −

(
n

n− 1

)
v′(t)

v(x)

[
t

ln(1 + t)

](n−1)
−
n−2∑
r=0

(
n

r

)
v(n−r)(t)

v(t)

[
t

ln(1 + t)

](r)
.

In a word, we have

n∑
r=0

(
n

r

)
v(n−r)(t)

[
t

ln(1 + t)

](r)
= 0

which can be reformulated as (10). Further taking t→ 0 in the above equation
acquires

n∑
r=0

(
n

r

)
(−1)n−r

(n− r)!
n− r + 1

r!br = 0

which recovers (7). The proof of Theorem 3 is complete. �
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4. Remarks

Finally we give several remarks on our main results and lemmas.

Remark 1. About the differential equations (6) and (10), there are some related
references such as [4, 15,19,22,23,25,30,31,36] worth to reading.

Remark 2. The formula (8) is essentially different from (2) and (3), because
the Stirling numbers of the second kind s(n, k) are used diagonally in (8) but
horizontally in (2) and (3). For more information, please refer to the papers [11,
12].

Remark 3. About the determinantal expression (9), we note that the for-
mula (12) in Lemma 1 has been applied in the papers [5, 9, 13, 14, 16–18, 20,
21,24,26–29,34,35] to express the Apostol–Bernoulli polynomials, the Cauchy
product of central Delannoy numbers, the Bernoulli polynomials, the Schröder
numbers, the (generalized) Fibonacci polynomials, the Catalan numbers, de-
rangement numbers, and the Euler numbers and polynomials in terms of the
Hessenberg and tridiagonal determinants. This implies that Lemma 1 is effec-
tual to express some mathematical quantities in terms of the Hessenberg and
tridiagonal determinants.

Remark 4. This paper is a slightly modified version of the preprint [33].
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