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A NOTE OF THE MODIFIED BERNOULLI POLYNOMIALS

AND IT’S THE LOCATION OF THE ROOTS†

H.Y. LEE

Abstract. This type of polynomial is a generating function that sub-

stitutes eλt for et in the denominator of the generating function for the
Bernoulli polynomial, but polynomials by using this generating function

has interesting properties involving the location of the roots. We define
these generation functions and observe the properties of the generation

functions.
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1. Introduction

Bernoulli numbers were discovered by Jakob Bernoulli in the 17th century.
As it is well known, Bernoulli numbers are related to many important properties
appearing in mathematics and physics. Thereby many mathematicians have
studied the Bernoulli numbers and polynomials, Euler numbers and polynomials,
Genocchi numbers and polynomials, and tangent numbers and polynomials(see
[1-12]).

In this paper, we are going to talk about the Bernoulli polynomials with an
some modified generation function. This type of polynomial is a generating
function that substitutes eλ for et in the denominator of the Bernoulli polyno-
mial generation function, but polynomials using by this generating function has
interesting properties involving the location of the roots. We define these gener-
ation functions and observe the properties of the generation functions. Also, we
compare the structure of the roots of the modified Bernoulli polynomials defined
here with the classical Bernoulli polynomials.

Throughout this paper, we will use the following notations: N denotes the set
of natural numbers, Z denotes the ring of rational integers, Q denotes the field
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of rational numbers, C denotes the set of complex numbers, Z+
0 = N ∪ {0} and

Z−0 =
{

0,−1,−2, · · ·
}

.

As a well known definition, the Bernoulli polynomials Bn(x) is defined by the
following generating function(see 3, 4, 7, 9, 11):

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, (|t| < 2π).

If x = 0, Bn = Bn(0) is called the Bernoulli numbers.
We plot the zeros of the Bernoulli polynomials Bn(x)(Figure 1).
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Figure 1. Plot the zeros of the Bernoulli polynomials

In Figure 1(left), plot the zeros of the Bernoulli polynomials for n = 50 and
x ∈ C. In Figure 1(right), plot of real zeros of the Bernoulli polynomials for
1 ≤ n ≤ 50 structure are presented

We observe that Bn(x), x ∈ C, has Re(x) = 1/2 reflection symmetry in ad-
dition to the usual Im(x) = 0 reflection symmetry analytic complex functions.
The obvious corollary is that the zeros of Bn(x) will also inherit these symme-
tries.

If Bn(x0) = 0, then Bn(1− x0) = 0 = Bn(x∗0) = Bn(1− x∗0).

Here, ∗ denotes complex conjugation. Prove that Bn(x) = 0 has n distinct
solutions.



A note of the modified bernoulli polynomials and it’s the location of the roots 293

2. Definition for the modified Bernoulli numbers and polynomials
and its basic properties

Definition 2.1. For λ 6= 0, the modified Bernoulli polynomials Bn,λ(x) are
defined by means of the generaing function:

t

eλt − 1
ext =

∞∑
n=0

Bn,λ(x)
tn

n!
, (|t| < 2π

|λ|
). (2.1)

If x = 0, then Bn,λ(0) = Bn,λ and we call it a modified Bernoulli numbers and
as λ→ 1, Bn,λ(x) = Bn(x).

From (2.1), we get the following form.

text = e(λ+Bλ(x)) − eBλt. (2.2)

The left side and right side of Equation (2.2) are changed by the Taylor series
as follows.

The left side is
∑∞
n=0 nx

n−1 tn

n! .

The right side is
∑∞
n=1

(
(λ+Bλ(x))n −Bn,λ(x)

)
tn

n! .

The following theorem is obtained by comparing the coefficients of tn

n! on the
left and right sides.

Theorem 2.2. For the nonnegative integer n and λ ∈ C,
nxn−1 = (λ+Bλ(x))n −Bn,λ(x)

=

n−1∑
l=0

(
n

l

)
λn−lBl,λ(x).

In paticula, if x=1, then

n = (λ+Bλ(1))n −Bn,λ(1)

=

n−1∑
l=0

(
n

l

)
λn−lBl,λ(1).

If x = 0, then

n−1∑
l=0

(
n

l

)
λn−lBl,λ =

{
1 if n = 1
0 if n > 1.

Theorem 2.3. For nonnegative integer n and λ ∈ C, we get

Bn,λ(mλ+ λ)−Bn,λ(λ)

n
= mn−1.
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Proof. From Definition 2.1, we get the following:

∞∑
n=0

(
Bn,λ(m+ λ)−Bn,λ(λ)

) tn
n!

= temt

=

∞∑
n=0

nmn−1 t
n

n!
.

(2.3)

Comparing the coefficient of tn

n! on both sides of (2.3), we obtain as below:

Bn,λ(m+ λ)−Bn,λ(λ) = nmn−1. (2.4)

From (2.4), we get the theorem.

Also, if m = 1, then we get

Bn,1(1 + λ)−Bn,1(λ) = n.

�

In equation (2.4), replace −m by λ. Then, we get a equation as belows:

Bn,−m −Bn,−m(−m) = (−1)n−1nmn−1. (2.5)

In equation (2.5), replace −m by m. Then, we get an another equation as
belows:

Bn,m −Bn,m(m) = nmn−1. (2.6)

From equations (2.5) and (2.6), we get a following corollary.

Corollary 2.4. For the non-negative integer n

if n is even, then, we get

Bn,−m +Bn,m = Bn,−m(−m) +Bn,−m(m)

and

if n is odd, then, we get

Bn,−m +Bn,m(m) = Bn,m +Bn,−m(−m).

Let F (x, λ, t) = t
eλt−1

ext =
∑∞
n=0Bn,λ(x) t

n

n! . Then

F (λ− x, λ,−t) =
−t

e−λt − 1
e−(λ−x)t

=
t

eλt − 1
ext

= F (x, λ, t)

(2.7)
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and

F (λ− x, λ,−t) =

∞∑
n=0

(−1)nBn,λ(λ− x)
tn

n!
. (2.8)

From (2.7) and (2.8), we get the following property.

Theorem 2.5. For n ≡ 2 (mod 2) and λ ∈ C
Bn,λ(x) = Bn,λ(λ− x).

It means that the polynomials Bn,λ(x) is symmetric about x = λ
2 .

By the Definition 2.1

p−1∑
b=0

( ∞∑
n=0

Bn,λ

(
α+

b

p
λ

)
tn

n!

)
=

p−1∑
b=0

t

eλt − 1
e(α+ b

pλ)t

=
t

e
λ
p t − 1

eαt

= p

∞∑
n=0

Bn,λ(pα)
1

pn
tn

n!
.

Hence, we get the following property.

Theorem 2.6. For non-negative integer n and λ ∈ C,

Bn,λ(pα) = pn−1

p−1∑
b=0

Bn,λ

(
α+

b

p
λ

)
.

We consider the patial derivation for x at
∑∞
n=0Bn,λ(x) t

n

n! = t
eλt−1

ext.

∂

∂x

∞∑
n=0

Bn,λ(x)
tn

n!
=

∂

∂x

t

eλt − 1
ext

= t

∞∑
n=0

Bn,λ(x)
tn

n!

=

∞∑
n=0

nBn−1,λ(x)
tn

n!
.

(2.9)

Therefore we get as below property.

Theorem 2.7. For non-negative integer n and λ ∈ C,

∂

∂x
Bn,λ(x) = nBn−1,λ(x).

Corollary 2.8. For non-negative integer n and λ ∈ C,
∂n

∂xn
Bn,λ(x) =

n!

λ
.
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From Definition 2.1 and Cauchy product, we get

∞∑
n=0

Bn,λ(x)
tn

n!
=

t

eλt − 1
ext =

∞∑
n=0

(
n∑
l=0

(
n

l

)
Bl,λx

n−l

)
tn

n!
. (2.10).

Comparing both sides of (2.10) with respect to tn

n! , we have the following:

Bn,λ(x) =

n∑
l=0

(
n

l

)
Bl,λx

n−l = (Bλ + x)n.

From F (x, λ, t) = t
eλt−1

ext, differential operator D and identity differential
operator I,

eλtF (x, λ, t)− F (x, λ, t) = text

⇔ Dk(eλtF (x, λ, t)− F (x, λ, t)) = Dk(text)

⇔ Dk−1(eλt(D + λI)F (x, λ, t)−DkF (x, λ, t) = (kxk−1 + xkt)ext

...

⇔ (D + λI)kF (x, λ, t)− e−λtDkF (x, λ, t) = e−λt(kxk−1 + xkt)ext

⇔ Dm(D + λI)kF (x, λ, t)− e−λt(D − λI)mDkF (x, λ, t)

= [(k + xt)(x− λ) +m]xk−1e(x−λ)t(x− λ)m−1

⇔ eλtDm(D + λI)kF (x, λ, t)− (D − λI)mDkF (x, λ, t)

= [(k + xt)(x− λ) +m]xk−1e(x−λ)t(x− λ)m−1eλt

⇔
k∑
l=0

(
k

l

)
eλtλk−lDm+lF (x, λ, t)−

m∑
l=0

(
m

l

)
(−λ)m−lDk+lF (x, λ, t)

= [(k + xt)(x− λ) +m]xk−1e(x−λ)t(x− λ)m−1eλt.

Since Dk+lF (x, λ, t)|t=0 = Bk+l,λ(x) and eλtDm+lF (x, λ, t)|t=0 = Bm+l,λ(x),
we get the following Proposition.

Theorem 2.9. For non-negative integer n and λ ∈ C,
max{k,m}∑

l=0

[(
k

l

)
λk−lBm+l,λ(x)− (−λ)m−l

(
m

l

)
Bl+k,λ(x)

]
= {(k + xt)(x− λ) +m}xk−1(x− λ)m−1.
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3. Distribution of zeros of the modified Bernoulli polynomials

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the
zeros of the modified Bernoulli polynomials Bn,λ(x). We investigate the zeros
of the Bn,λ(x) by using a computer. We plot the zeros of the modified Bernoulli
polynomials Bn,λ(x) for n = 50, λ = 1, 3, 5, 7 and x ∈ C(Figure 2).

-20 -10 0 10 20

-30

-20

-10

0

10

20

30

Re(x)

Im(x)

-20 -10 0 10 20

-30

-20

-10

0

10

20

30

Re(x)

Im(x)

-20 -10 0 10 20

-30

-20

-10

0

10

20

30

Re(x)

Im(x)

-20 -10 0 10 20

-30

-20

-10

0

10

20

30

Re(x)

Im(x)

Figure 2. Zeros of Bn,λ(x)

In Figure 2(top-left), we choose n = 50, λ = 2 . In Figure 2(top-right), we
choose n = 50, λ = 3. In Figure 2(bottom-left), we choose n = 50, λ = 4. In
Figure 2(bottom-right), we choose n = 50, λ = 5.

Stacks of zeros of Bn,λ(x, λ) for 1 ≤ n ≤ 50 from a 3-D structure are pre-
sented(Figure 3).
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Figure 3. Stacks of zeros of Bn(x, λ) for 1 ≤ n ≤ 50

In Figure 3(left), we choose 1 ≤ n ≤ 50 and λ = 2. In Figure 3(right), we
choose 1 ≤ n ≤ 50 and λ = 5. Our numerical results for approximate solutions
of real zeros of Bn(x, λ) are displayed(Tables 1, 2).

Table 1. Numbers of real and complex zeros of Bn(x, λ)

λ = 2 λ = 5
degree n real zeros complex zeros real zeros complex zeros

1 1 0 1 0
2 2 0 2 0
3 3 0 3 0
4 4 0 4 0
5 5 0 5 0
6 2 4 2 4
7 3 4 3 4
8 4 4 4 4
9 5 4 5 4
10 6 4 6 4
11 7 4 7 4
12 4 8 4 8
13 5 8 5 8
14 6 8 6 8
15 7 8 7 8
16 8 8 8 8
17 5 12 5 12

For λ = 2, 5, plot of real zeros of Bn(x, λ) for 1 ≤ n ≤ 50 structure are
presented(Figure 4).

In Figure 4(left), we choose 1 ≤ n ≤ 50 and λ = 2. In Figure 4(right), we
choose 1 ≤ n ≤ 50 and λ = 5.
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Figure 4. Real zeros of Bn(x, λ) for 1 ≤ n ≤ 50

We observe a remarkably regular structure of the complex roots of the modi-
fied Bernoulli polynomials Bn,λ(x)(see Table1). Next, we calculated an approx-
imate solution satisfying Bn(x, λ) = 0 for λ = 2, x ∈ C. The results are given in
Table 2.

Table 2. Approximate solutions of Bn(x, λ) = 0, x ∈ R

degree n x

1 1.0000

2 0.42265, 1.5774

3 0, 1.0000, 2.0000

4 −0.31541, 0.48067, 1.5193, 2.3154

5 −0.52753, 0, 1.000, 2.0000, 2.5275

6 0.49508, 1.5049

7 0, 1.000, 2.0000

8 −0.49443, 0.49876, 1.5012, 2.4944

9 −0.89821, 0, 1.0000, 2.0000, 2.8982

10 −1.1479, −0.49985, 0.49969, 1.5003, 2.4998, 3.1479

11 −1.2361, −1.0374, 0, 1.0000, 2.0000, 3.0374, 3.2361
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