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GENERATING FUNCTIONS FOR THE EXTENDED WRIGHT

TYPE HYPERGEOMETRIC FUNCTION

Ranjan Kumar Jana, Bhumika Maheshwari, and Ajay Kumar Shukla

Abstract. In recent years, several interesting families of generating func-
tions for various classes of hypergeometric functions were investigated sys-
tematically. In the present paper, we introduce a new family of extended
Wright type hypergeometric function and obtain several classes of gener-
ating relations for this extended Wright type hypergeometric function.

1. Introduction

The Gauss hypergeometric function [7] is defined as

(1) 2F1(a, b; c; z) =

∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
, (|z| < 1, c 6= 0,−1,−2, . . .)

where (λ)v, (λ, v ∈ C) denotes the Pochhammer symbol defined by

(2) (λ)v :=
Γ(λ+ v)

Γ(λ)
=

{

1 (v = 0; λ ∈ C\{0}),

λ(λ+ 1) · · · (λ+ n− 1) (v ∈ N; λ ∈ C),

it being assumed conventionally that (0)0 := 1 and understood tacitly that the
Γ-quotient exists (see, for details, [11]).

The classical generalized hypergeometric function [4] is defined by

(3) pFq

[

a1, . . . , ap;
b1, . . . , bq;

z

]

=
∞
∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
, (p = q + 1, |z| < 1)

where no denominator parameter is zero or negative integer.
Wright [16] further extended the generalized hypergeometric function in the

following form

(4) pΨq(z) =

∞
∑

n=0

Γ (α1 + β1n) · · ·Γ (αp + βpn)

Γ (ρ1 + µ1n) · · ·Γ (ρq + µqn)

zn

n!
,
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where βr and µt are real positive numbers such that

1 +

q
∑

t=1

µt −

p
∑

r=1

βr > 0.

When βr and µt are equal to 1 then equation (4) differs from the generalized
hypergeometric function pFq(z) only by a constant multiplier.

This generalized form of the hypergeometric function has been investigated
by Dotsenko [3], Malovichko [5] and others. One of the special cases of this
generalized form of the hypergeometric function considered in [3] has the form

(5) 2R
ω,µ
1 (z) = 2R1(a, b; c;ω, µ; z) =

Γ(c)

Γ(a)Γ(b)

∞
∑

n=0

Γ(a+ n)Γ
(

b+ ω
µn
)

Γ
(

c+ ω
µn
)

zn

n!
.

In 2001, Virchenko et al. [15] defined the said Wright type hypergeometric
function by taking ω

µ = τ > 0 in (5) as

(6) 2R
τ
1(z) = 2R1(a, b; c; τ ; z) =

Γ(c)

Γ(b)

∞
∑

n=0

(a)nΓ(b+ τn)

Γ(c+ τn)

zn

n!
,

whose various properties have been studied by Rao et al. [8, 9].
Recently, Parmar [6] introduced the following extension of the τ -hyper-

geometric function (6) as

2R
τ
1((a, p), b; c; z) =

Γ(c)

Γ(b)

∞
∑

n=0

(a; p)nΓ(b+ τn)

Γ(c+ τn)

zn

n!
,(7)

(ℜ(p) > 0; τ > 0, |z| < 1; ℜ(c) > ℜ(b) > 0 when p = 0)

in terms of the generalized Pochhammer symbol [10]

(8) (λ; p)v =







Γp(λ+ v)

Γ(λ)
(ℜ(p) > 0; λ, v ∈ C) ,

(λ)v (p = 0;λ, v ∈ C).

The generalized gamma function Γp(z) involved in the definition (8) is in-
troduced by Chaudhry and Zubair [1] (see also [2]) as

(9) Γp(z) =







∫ ∞

0

tz−1 exp
(

−t−
p

t

)

dt (ℜ(p) > 0; z ∈ C) ,

Γ(z) (p = 0; ℜ(z) > 0) .

In 2013, Srivastava [13] defined a family of the generalized and extended
hypergeometric function uFv as

uFv

[ (

a0; p, {κl}l∈N0

)

, a2, . . . , au;
b1, . . . , bv;

z

]

=

∞
∑

n=0

(

a0; p, {κl}l∈N0

)

n
(a2)n · · · (au)n

(b1)n · · · (bv)n

zn

n!
(10)
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in terms of the generalized and extended Pochhammer symbol [13] defined by

(11)
(

λ; p, {κl}l∈N0

)

v
=

Γ
({κl}l∈N0

)
p (λ+ v)

Γ
({κl}l∈N0

)
p (λ)

(λ, v ∈ C),

provided that the series on the right hand side of (10) converges.

The function Γ
({κl}l∈N0

)
p (z) is the generalized and extended gamma function

[12] defined by

(12) Γ
({κl}l∈N0

)
p (z)=

∫ ∞

0

tz−1 Θ
(

{κl}l∈N0
;−t−

p

t

)

dt, (ℜ(z) > 0; ℜ(p) ≥ 0)

where, for an appropriately bounded sequence {κl}l∈N0
of essentially arbitrary

(real or complex) number, the function Θ
(

{κl}l∈N0
; z
)

is due to Srivastava [13]

(13)

Θ
(

{κl}l∈N0
; z
)

=















∞
∑

l=0

κl
zl

l!
(|z| < R; R > 0; κ0 := 1) ,

M0 z
ω exp(z)

[

1 +O
(

1
|z|

)]

(|z| → ∞; M0 > 0; ω ∈ C)

for some suitable constant M0 and ω depending essentially upon the sequence
{κl}l∈N0

.
Motivated by the aforecited investigations of hypergeometric function, we

introduce an extension of the τ -Wright type hypergeometric function (6) by
using the generalized and extended Pochhammer symbol defined by (11). We
then derive several classes of generating relations involving this extended τ -
hypergeometric function. We also consider some interesting special cases from
our main results.

2. Extension of τ -Wright type hypergeometric function

In terms of the generalized and extended Pochhammer symbol
(

λ; p, {κl}l∈N0

)

v

defined by (11), we introduce the extension of the τ -Wright type hypergeomet-
ric function (6) as follows

2R
τ
1

((

a; p, {κl}l∈N0

)

, b; c; z
)

=
Γ(c)

Γ(b)

∞
∑

n=0

(

a; p, {κl}l∈N0

)

n
Γ(b+ τn)

Γ(c+ τn)

zn

n!
,(14)

(ℜ(p) ≥ 0, τ > 0, |z| < 1)

where c is never zero or negative integer.

Remark 2.1. In a very special case, when κl ≡ 1 (l ∈ N0) and p = 0 in
the denominator in definition (11), the generalized and extended Pochhammer
symbol

(

λ; p, {κl}l∈N0

)

v
reduces to the generalized Pochhammer symbol (8),

while (14) reduces to the extended τ -hypergeometric function (7). If in (11),
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we have p = 0 also in the numerator, we get the τ -Wright type hypergeometric
function (6) as a special case of (14).

Also, (10) becomes the extended τ -Wright type hypergeometric function (14)
on setting u = 2, v = 1 in (10) and τ = 1 in (14).

The extended τ -Wright type hypergeometric function (14) has the following
integral representation

2R
τ
1

((

a; p, {κl}l∈N0

)

, b; c; z
)

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1 − t)
c−b−1

1F0

[(

a; p, {κl}l∈N0

)

;−; ztτ
]

dt,(15)

(ℜ(c) > ℜ(b) > 0).

We can easily derive (15) by using Γ(b+τn)
Γ(c+τn) =

B(b+τn,c−b)
Γ(c−b) , (ℜ(c) > ℜ(b) > 0)

and applying the definition of beta function [7]

(16) B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt, (ℜ(α) > 0; ℜ(β) > 0).

3. Results on generating functions

In this section, we derive generating functions for the extended τ -Wright
type hypergeometric function defined by (14). Our main results are asserted
by Theorem 3.1 and Theorem 3.3 given below.

First of all, the generalized binomial coefficient
(

λ
µ

)

is defined (for real or

complex parameters λ and µ) as (see [14]):

(17)

(

λ

µ

)

:=
Γ(λ+ 1)

Γ(µ+ 1)Γ(λ− µ+ 1)
=:

(

λ
λ− µ

)

(λ, µ ∈ C),

so that, in the special case when µ = n (n ∈ N0), we have

(18)

(

λ

n

)

=
λ(λ − 1) · · · (λ− n+ 1)

n!
=

(−1)n(−λ)n
n!

(n ∈ N0).

Theorem 3.1. The following generating relations hold true for the extended

τ-Wright type hypergeometric function 2R
τ
1 defined by (14)

∞
∑

n=0

(

λ+ n− 1
n

)

2R
τ
1

[ (

a; p, {κl}l∈N0

)

, λ+ n;
c;

z

]

tn

= (1− t)−λ
2R

τ
1

[ (

a; p, {κl}l∈N0

)

, λ;
c;

z

(1− t)
τ

]

(19)

(|t| < 1; λ ∈ C; τ > 0),

and
∞
∑

n=0

(

λ+ n− 1
n

)

2R
τ
1

[ (

a; p, {κl}l∈N0

)

, b;
1− λ− n;

z

]

tn
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= (1− t)−λ
2R

τ
1

[ (

a; p, {κl}l∈N0

)

, b;
1− λ;

z(1− t)
τ

]

(20)

(|t| < 1; λ ∈ C; τ > 0)

provided that both members of each of the generating functions (19) and (20)
exist.

Proof. By using the definitions of the generalized bionomial coefficient (18)
and the extended τ -Wright type hypergeometric function (14), we have the left
hand side of the relation (19) as

∞
∑

n=0

(

λ+ n− 1
n

)

2R
τ
1

[ (

a; p, {κl}l∈N0

)

, λ+ n;
c;

z

]

tn

=

∞
∑

n=0

(−1)
n
(−λ− n+ 1)n

n!

(

Γ(c)

Γ(λ+ n)

∞
∑

k=0

(

a; p, {κl}l∈N0

)

k

Γ(λ+ n+ τk)

Γ(c+ τk)

zk

k!

)

tn

=

∞
∑

n=0

(λ)n
n!

(

Γ(c)

Γ(λ+ n)

∞
∑

k=0

(

a; p, {κl}l∈N0

)

k

Γ(λ + n+ τk)

Γ(c+ τk)

zk

k!

)

tn

=
Γ(c)

Γ(λ)

∞
∑

k=0

(

∞
∑

n=0

(λ+ τk)n
tn

n!

)
(

a; p, {κl}l∈N0

)

k
Γ(λ+ τk)

Γ(c+ τk)

zk

k!
,

where in the last step, we used
(λ)

n
Γ(λ+n+τk)

Γ(λ+n) = (λ+ τk)n
Γ(λ+τk)

Γ(λ) and inverted

the order of the summation.

Now, by applying the generalized bionomial expansion [7],
∞
∑

n=0
(a)n

tn

n! =

(1− t)−a, we are led to the assertion (19).

In order to derive assertion (20), we use
(λ)nΓ(1−λ−n)

Γ(1−λ−n+τk) = (λ− τk)n
Γ(1−λ)

Γ(1−λ+τk)

and apply similar steps of the proof of assertion (19). �

Remark 3.2. We can get the same generating relations (19) and (20) of Theorem
3.1 for the extended τ -hypergeometric function (7) due to Parmar [6].

Next, we introduce the sequences
{

ϕ
(λ,τ)
n (z)

}

n∈N0

and
{

θ
(λ,τ)
n (z)

}

n∈N0

of

the extended τ -Wright type hypergeometric function as

(21) ϕ(λ,τ)
n (z) = 2R

τ
1

( (

a; p, {κl}l∈N0

)

, λ+ n;
c;

z

)

,

and

(22) θ(λ,τ)n (z) = 2R
τ
1

( (

a; p, {κl}l∈N0

)

, b;
1− λ− n;

z

)

.
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Theorem 3.3. The following generating relations hold true for the sequences
{

ϕ
(λ,τ)
n (z)

}

n∈N0

and
{

θ
(λ,τ)
n (z)

}

n∈N0

respectively defined by (21) and (22)

∞
∑

n=0

(

λ+m+ n− 1
n

)

ϕ
(λ,τ)
m+n(z)t

n = (1− t)−λ−m ϕ(λ,τ)
m

(

z

(1− t)
τ

)

(23)

(|t| < 1; m ∈ N0; λ ∈ C; τ > 0),

and
∞
∑

n=0

(

λ+m+ n− 1
n

)

θ
(λ,τ)
m+n(z)t

n = (1− t)−λ−m θ(λ,τ)m (z(1− t)τ )(24)

(|t| < 1; m ∈ N0; λ ∈ C; τ > 0).

Proof. By substituting for the sequence
{

ϕ
(λ,τ)
n (z)

}

n∈N0

and using the defini-

tions of the generalized bionomial coefficient (18) and the extended τ -Wright
type hypergeometric function (14), and inverting the order of the summation,
we have the left hand side of the relation (23) as

∞
∑

n=0

(

λ+m+ n− 1
n

)

ϕ
(λ,τ)
m+n(z)t

n

=

∞
∑

k=0

(

∞
∑

n=0

(λ+m+ τk)n
tn

n!

)

Γ(c)

Γ(λ+m)

(

a; p, {κl}l∈N0

)

n
Γ(λ+m+ τk)

Γ(c+ τk)

zk

k!
.

Further employing the generalized bionomial expansion, this leads to the
assertion (23).

The same method of the proof of assertion (23) can be applied for the se-

quence
{

θ
(λ,τ)
n (z)

}

n∈N0

in order to derive the second assertion (24) of the the-

orem. �

4. Applications

In this section, we use Theorem 3.3 in order to derive various interesting
classes of linear, bilinear and bilateral (or mixed multilateral) generating func-

tions for the sequences
{

ϕ
(λ,τ)
n (z)

}

n∈N0

and
{

θ
(λ,τ)
n (z)

}

n∈N0

respectively de-

fined by (21) and (22) in terms of the extended τ -Wright type hypergeometric
function 2R

τ
1

((

a; p, {κl}l∈N0

)

, b; c; z
)

defined by (14).

Theorem 4.1. Corresponding to a non-vanishing function Πµ(ξ1, . . . , ξs) of

s complex variables ξ1, . . . , ξs (s ∈ N) and involving a complex parameter µ,
called the order, let

Ω(1)
m,p,q [z; ξ1, . . . , ξs; t] :=

∞
∑

n=0

anϕ
(λ+σnq,τ)
m+nq (z) ·Πµ+np(ξ1, . . . , ξs)t

n(25)

(an 6= 0;m ∈ N0; p, q ∈ N; τ > 0, σ ∈ C),
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and

Ω(2)
m,p,q [z; ξ1, . . . , ξs; t] :=

∞
∑

n=0

anθ
(λ+σnq,τ)
m+nq (z)Πµ+np (ξ1, . . . , ξs) t

n(26)

(an 6= 0; m ∈ N0; p, q ∈ N; τ > 0;σ ∈ C) .

Suppose also that

Θλ,p,µ,σ
m,n,q (z; ξ1, . . . , ξs; η)(27)

:=

[n/q]
∑

l=0

(

λ+m+ σql + n− 1
n− ql

)

al ϕ
(λ+σql,τ)
m+n (z) ·Πµ+pl(ξ1, . . . , ξs)η

l,

and

Φλ,p,µ,σ
m,n,q (z; ξ1, . . . , ξs; η)(28)

:=

[n/q]
∑

l=0

(

λ+m+ σql + n− 1
n− ql

)

al θ
(λ+σql,τ)
m+n (z)tn · Πµ+pl (ξ1, . . . , ξs) η

l,

where the sequences
{

ϕ
(λ,τ)
n (z)

}

n∈N0

and
{

θ
(λ,τ)
n (z)

}

n∈N0

are defined by (21)

and (22), respectively. Then

∞
∑

n=0

Θλ,p,µ,σ
m,n,q (z; ξ1, . . . , ξs; η)t

n(29)

= (1− t)−λ−mΩ(1)
m,p,q

[

z

(1− t)
τ ; ξ1, . . . , ξs;

ηtq

(1 − t)(σ+1)q

]

(|t| < 1),

and

∞
∑

n=0

Φλ,p,µ,σ
m,n,q (z; ξ1, . . . , ξs; η) t

n(30)

= (1− t)−λ−mΩ(2)
m,p,q

[

z(1− t)
τ
; ξ1, . . . , ξs;

ηtq

(1− t)
(σ+1)q

]

(|t| < 1).

Proof. By using the definition of Θλ,p,µ,σ
m,n,q (z; ξ1, . . . , ξs; η) from (27) in (29), we

obtain
∞
∑

n=0

Θλ,p,µ,σ
m,n,q (z; ξ1, . . . , ξs; η)t

n

=

∞
∑

n=0

[n/q]
∑

l=0

(

λ+m+ σql + n− 1
n− ql

)

al

ϕ
(λ+σql,τ)
m+n (z) ·Πµ+pl(ξ1, . . . , ξs) η

ltn
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=

∞
∑

l=0

al Πµ+pl(ξ1, . . . , ξs) (ηt
q)

l

∞
∑

n=0

(

λ+m+ (σ + 1)ql+ n− 1
n

)

ϕ
(λ+σql,τ)
m+n+ql (z) tn,(31)

where we have inverted the order of the double summation involved.
By applying Theorem 3.3 on (31), we find
∞
∑

n=0

Θλ,p,µ,σ
m,n,q (z; ξ1, . . . , ξs; η)t

n

=

∞
∑

l=0

al Πµ+pl(ξ1, . . . , ξs)(ηt
q)

l

(

(1− t)
−λ−m−(σ+1)ql

ϕ
(λ+σql,τ)
m+ql

(

z

(1 − t)
τ

))

which, in view of the definition (25), is precisely the right side of the assertion
(29).

We have thus completed the proof of the assertion (29) under the assumption
that the double series involved in the first two steps of our proof are absolutely
(and uniformly) convergent. Thus, in general, the assertion (29) holds true at
least as a relation between formal power series.

The same method of proof of the first assertion (29) can be applied in order
to derive the second assertion (30) of Theorem 4.1, which would yield bilateral

or mixed multilateral generating relations for the sequence
{

θ
(λ,τ)
n (z)

}

n∈N0

defined by (22) in terms of the extended τ -Wright type hypergeometric function

2R
τ
1

((

a; p, {κl}l∈N0

)

, b; c; z
)

defined by (14). �

Remark 4.2. If we define the sequences
{

ϕ
(λ,τ)
n (z)

}

n∈N0

and
{

θ
(λ,τ)
n (z)

}

n∈N0

in terms of Parmar’s τ -hypergeometric function (7) as

(32) ϕ(λ,τ)
n (z) = 2R

τ
1 ((a; p), λ+ n; c; z)

and

(33) θ(λ,τ)n (z) = 2R
τ
1 ((a; p), b; 1− λ− n; z) ,

then the generating relations (23) and (24) of Theorem 3.3, and (29) and (30)
of Theorem 4.1, still hold true for the sequences defined in (32) and (33).

Remark 4.3. We can further generalize the τ -Wright type hypergeometric func-
tion (14) as

(34)

pR
τ
q

[ (

a1; p, {κl}l∈N0

)

, a1, a2, . . . , ap;
b1, b2, . . . , bq;

z

]

=
Γ(c)

Γ(b)

∞
∑

n=0

(

a1; p, {κl}l∈N0

)

n
Γ(a2 + τn)(a3)n · · · (ap)n

Γ(b1 + τn)(b2)n · · · (bq)n

zn

n!

provided that the series on the right hand side converges.
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On applying the methodology described in the above mentioned theorems,
one can derive analogous generating relations involving the function (34).

Acknowledgment. The authors would like to thank the anonymous referee(s)
for their valuable suggestions.
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