• Title/Summary/Keyword: 3D ultrasound

Search Result 160, Processing Time 0.014 seconds

INDUSTRIAL MATHEMATICS IN ULTRASOUND IMAGING

  • JANG, JAESEONG;AHN, CHI YOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.175-202
    • /
    • 2016
  • Ultrasound imaging is a widely used tool for visualizing human body's internal organs and quantifying clinical parameters. Due to its advantages such as safety, non-invasiveness, portability, low cost and real-time 2D/3D imaging, diagnostic ultrasound industry has steadily grown. Since the technology advancements such as digital beam-forming, Doppler ultrasound, real-time 3D imaging and automated diagnosis techniques, there are still a lot of demands for image quality improvement, faster and accurate imaging, 3D color Doppler imaging and advanced functional imaging modes. In order to satisfy those demands, mathematics should be used properly and effectively in ultrasound imaging. Mathematics has been used commonly as mathematical modelling, numerical solutions and visualization, combined with science and engineering. In this article, we describe a brief history of ultrasound imaging, its basic principle, its applications in obstetrics/gynecology, cardiology and radiology, domestic-industrial products, contributions of mathematics and challenging issues in ultrasound imaging.

A New Algorithm to Estimate Urine Volume from 3D Ultrasound Bladder Images (3D 초음파 영상에서 방광 내 잔뇨량 추정을 위한 새로운 알고리즘)

  • Cho, Tae Sik;Lee, Soo Yeol;Cho, Min Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • For the patients with bladder dysfunction, measurement of urine volume inside the bladder is very critical to avoid bladder failure. In measuring urine volume inside a bladder, low-resolution 3D ultrasound images are widely used. However, urine volume estimation from 3D ultrasound images is prone to big errors and inconsistency because of low spatial resolution and low signal-to-noise ratio of ultrasound images. We developed a new robust volume estimation algorithm which is not computationally expensive. We tested the algorithm on a lab-built ultrasound bladder phantom and volunteers. The average error rate of the human bladder volume estimation was 5.9% which was better than the commercial machine.

Evaluation of the Accuracy and Precision Three-Dimensional Stereotactic Breast Biopsy (3차원 입체정위 유방생검술의 정확도 및 정밀도 평가)

  • Lee, Mi-Hwa
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • This research was study the accuracy of three-dimensional stereotactic breast biopsy, using a core Needle Biopsy and to assess the accuracy of Stereotactic biopsy and Sono guided biopsy. Using Stereotactic QC phantom to measure the accuracy of the 3D sterotactic machine. CT Scan and equipment obtained in the measured X, Y, Z and compares the accuracy of the length. Using Agar power phantom compare the accuracy of the 3D sterotactic machine and 2D ultrasound machine. Z axis measured by the equipment to compare the accuracy and reliability. Check the accuracy by using visual inspection and Specimen Medical application phantom. The accuracy of the 3D sterotactic machine measured by Stereotactic QC phantom was 100%. Accuracy as compared to CT, all of X, Y, Z axis is p > 0.05. The accuracy of the two devices was 100% as measured by Agar powder phantom. There was no difference between t he t wo d evices as C T and p > 0.05. 3D sterotactic machine of the ICC was 0.954, 2D ultrasound machine was 0.785. 2D ultrasound machine was different according to the inspector. Medical application phantom experiments in 3D sterotactic machine could not find the Sliced boneless ham. 2D ultrasound machine has not been able to find a small chalk powder group. The reproducibility of the three-dimensional stereotactic breast biopsy was better than effect of Sono guided biopsy.

Microfluidic Device for Ultrasound Image Analysis based on 3D Printing (초음파 영상 분석을 위한 3D 프린팅 기반 미세유체소자)

  • Kang, Dongkuk;Hong, Hyeonji;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • For the measurement of biophysical properties related with cardiovascular diseases (CVD), various microfluidic devices were proposed. However, many devices were monitored by optical equipment. Ultrasound measurement to quantify the biophysical properties can provide new insights to understand the cardiovascular diseases. This study aims to check feasibility of microfluidic device for ultrasound image analysis based on 3D printer. To facilitate acoustic transmission, agarose solution is poured around 3D mold connected with holes of the acrylic box. By applying speckle image velocimetry(SIV) technique, flow information in the bifurcated channel was estimated. Considering that ultrasound signal amplitude is determined by red blood cell (RBC) aggregation, RBC aggregation in the bifurcated channel can be estimated through the analysis of ultrasound signal. As examples of microfluidic device which mimic the CVD model, velocity fields in microfluidic devices with stenosis and aneurysm were introduced.

Implementation of low-noise, wideband ultrasound receiver for high-frequency ultrasound imaging (고주파수 초음파 영상을 위한 저잡음·광대역 수신 시스템 구현)

  • Moon, Ju-Young;Lee, Junsu;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.238-246
    • /
    • 2017
  • High frequency ultrasound imaging typically suffers from low sensitivity due to the small aperture of high frequency transducers and shallow imaging depth due to the frequency-dependent attenuation of ultrasound. These limitations should be overcome to obtain high-frequency, high- resolution ultrasound images. One practical solution to the problems is a high-performance signal receiver capable of detecting a very small signal and amplifying the signal with minimal electronic noise addition. This paper reports a recently developed low-noise, wideband ultrasound receiver for high-frequency, high-resolution ultrasound imaging. The developed receiver has an amplification gain of up to 73 dB and a variable amplification gain range of 48 dB over an operating frequency of 80 MHz. Also, it has an amplification gain flatness of ${\pm}1dB$. Due to these high performances, the developed receiver has a signal-to-noise ratio of at least 8.4 dB and a contrast-to-noise ratio of at least 3.7 dB higher than commercial receivers.

Ultrasonic Transducers for Medical Volumetric Imaging

  • Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.111-118
    • /
    • 2010
  • Three-dimensional ultrasound imaging is a new, exciting technology that allows physicians to use ultrasound to view pathology as a volume, thereby enhancing comprehension of patient anatomy. In this paper, a brief history of the 3-D ultrasound imaging is described in accordance with the development of transducer technology. Then, two representative types of 3-D imaging transducers are reviewed with description of the concept and operation principle of each type: mechanical transducer and matrix array transducer. The mechanical transducer is detailed into free-hand scanning and sequential scanning types. Advantages of each transducer over the other and the technical issues for further performance enhancement are also presented.

2D Sparse Array Transducer Optimization for 3D Ultrasound Imaging

  • Choi, Jae Hoon;Park, Kwan Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.441-446
    • /
    • 2014
  • A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

A New Ultrasound Bladder Scanner to Estimate Urine Volume Using Hand-Motion Scan (손 동작 스캔을 이용한 잔뇨량 측정용 초음파 방광 스캐너)

  • Lee, Jung Hwan;Bae, Jung Ho;Lee, Soo Yeol;Cho, Min Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.153-160
    • /
    • 2018
  • 3D ultrasound bladder scanners are getting popular in hospitals for the patients with bladder dysfunction. A current bladder scanner adopts a mechanical scan to acquire 3D images and requires two motors and complicated mechanical devices. In this paper, we propose a new ultrasound bladder scanner using hand-motion scan. Instead of two motors and mechanical devices, it has a motion sensor to record transducer positions during hand-motion scan. The experiments with a bladder phantom and volunteers showed similar measurement accuracy to a conventional 3D ultrasound bladder scanner. We expect that the proposed method will reduce the cost and size of the bladder scanner.

3D Segmentation of a Diagnostic Object in Ultrasound Images Using LoG Operator (초음파 영상에서 LoG 연산자를 이용한 진단 객체의 3차원 분할)

  • 정말남;곽종인;김상현;김남철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.247-257
    • /
    • 2003
  • This paper proposes a three-dimensional (3D) segmentation algorithm for extracting a diagnostic object from ultrasound images by using a LoG operator In the proposed algorithm, 2D cutting planes are first obtained by the equiangular revolution of a cross sectional Plane on a reference axis for a 3D volume data. In each 2D ultrasound image. a region of interest (ROI) box that is included tightly in a diagnostic object of interest is set. Inside the ROI box, a LoG operator, where the value of $\sigma$ is adaptively selected by the distance between reference points and the variance of the 2D image, extracts edges in the 2D image. In Post processing. regions of the edge image are found out by region filling, small regions in the region filled image are removed. and the contour image of the object is obtained by morphological opening finally. a 3D volume of the diagnostic object is rendered from the set of contour images obtained by post-processing. Experimental results for a tumor and gall bladder volume data show that the proposed method yields on average two times reduction in error rate over Krivanek's method when the results obtained manually are used as a reference data.

Development and Evaluation of D-Attention Unet Model Using 3D and Continuous Visual Context for Needle Detection in Continuous Ultrasound Images (연속 초음파영상에서의 바늘 검출을 위한 3D와 연속 영상문맥을 활용한 D-Attention Unet 모델 개발 및 평가)

  • Lee, So Hee;Kim, Jong Un;Lee, Su Yeol;Ryu, Jeong Won;Choi, Dong Hyuk;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.195-202
    • /
    • 2020
  • Needle detection in ultrasound images is sometimes difficult due to obstruction of fat tissues. Accurate needle detection using continuous ultrasound (CUS) images is a vital stage of treatment planning for tissue biopsy and brachytherapy. The main goal of the study is classified into two categories. First, new detection model, i.e. D-Attention Unet, is developed by combining the context information of 3D medical data and CUS images. Second, the D-Attention Unet model was compared with other models to verify its usefulness for needle detection in continuous ultrasound images. The continuous needle images taken with ultrasonic waves were converted into still images for dataset to evaluate the performance of the D-Attention Unet. The dataset was used for training and testing. Based on the results, the proposed D-Attention Unet model showed the better performance than other 3 models (Unet, D-Unet and Attention Unet), with Dice Similarity Coefficient (DSC), Recall and Precision at 71.9%, 70.6% and 73.7%, respectively. In conclusion, the D-Attention Unet model provides accurate needle detection for US-guided biopsy or brachytherapy, facilitating the clinical workflow. Especially, this kind of research is enthusiastically being performed on how to add image processing techniques to learning techniques. Thus, the proposed method is applied in this manner, it will be more effective technique than before.