References
- Kamilaris, Andreas, Francesc X, Prenafeta-Boldu. Deep learning in agriculture: A survey. Computers and electronics in agriculture. 2018;147:70-90. https://doi.org/10.1016/j.compag.2018.02.016
- Dinggang S, Wu G, Suk HI. Deep learning in medical image analysis. Annual review of biomedical engineering. 2017;19:221-48. https://doi.org/10.1146/annurev-bioeng-071516-044442
- Zhao ZQ, Zheng P, Xu S, Wu X. Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems 2019;30(11): 3212-32. https://doi.org/10.1109/TNNLS.2018.2876865
- Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, P.Lungren M, Y.Ng A. Chexnet : Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv. 2017.
- Krizhevsky A, Sutskever J, Hinton G. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems. 2012;25:1097-05.
- Falk T, Mai D, Bensch R, Cicek O, Abdulkadir A, Marrakchi Y, Bohm A, Deubner J, Jackel Z, Seiwald K, Dovzhenko A, Tietz O, Bosco CD, Walsh S, Saltukoglu D, Tay TL, Prinz M, Palme K, Simons M, Diester L, Brox T, Ronneberger. Unet: deep learning for cell counting, detection, and morphometry. Nature methods. 2019;16:67-70. https://doi.org/10.1038/s41592-018-0261-2
- Ronneberger O, Fischer P, Brox T. Unet: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention. 2015;234-41.
- Weng Y, Zhou T, Li Y, Qiu X. Nas-unet: Neural architecture search for medical image segmentation. IEEE Access. 2019;7:44247-57. https://doi.org/10.1109/ACCESS.2019.2908991
- Dubost F, Bortsova G, Adams H, Ikram A, Niessen W.J., Vernooij M, de Bruijne M. GP-Unet: Lesion detection from weak labels with a 3D regression network. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2017;214-21.
- Denil M, Shakibi B, Dinh L, Ranzato MA, de Freitas N. Predicting parameters in deep learning. In Advances in neural information processing systems. 2013;26:2148-56.
- Torralba A, Murphy KP, Freeman WT, Rubin MA. Contextbased vision system for place and object recognition. ICCV. 2003;3:273-80.
- Mottaghi R, Chen X, Liu X, Cho NG, Lee SW, Fidler S, Urtasun R, Yuille A. The Role of Context for Object Detection and Semantic Segmentation in the Wild. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2014;891-8.
- Zhou Y, Huang W, Dong P, Xia Y, Wang S. D-UNet: a dimension-fusion U shape network for chronic stroke lesion segmentation. IEEE/ACM transactions on computational biology and bioinformatics. 2019.
- Jin Q, Meng Z, Pham TD, Chen Q, Wei L, Su R. DUNet: A deformable network for retinal vessel segmentation. Knowledge-Based Systems. 2019;178:149-62. https://doi.org/10.1016/j.knosys.2019.04.025
- Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich, M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D. Attention Unet: Learning where to look for the pancreas. MIDL. 2018.
- Dong Y, Feng H, Xu Z, Chen Y, Li Q. Attention Res-Unet: an efficient shadow detection algorithm. Journal of ZheJiang University (Engineering Science). 2019;53(2):373-81.
- Sinha, Ashish, Dolz J. Multi-scale guided attention for medical image segmentation. arXiv. 2019.
- Ding M, Fenster A. A real-time biopsy needle segmentation technique using Hough Transform. Medical physics. 2003;30(8):2222-33. https://doi.org/10.1118/1.1591192
- Mehrtash A, Ghafoorian M, Pernelle G, Ziaei A, Heslinga FG, Tuncali K, Fedorov A, Kikinis R, Tempany CM, Wells WM, Abolmaesumi P, Kapur T. Automatic needle segmentation and localization in MRI with 3-D convolutional neural networks: application to MRI-targeted prostate biopsy. IEEE transactions on medical imaging. 2018;38(4):1026-36. https://doi.org/10.1109/tmi.2018.2876796
- Zhang Y, He X, Tian Z, Jeong JJ, Lei Y, Wang T, Zeng Q, Jani A.B, Curran W.J, Patel P, Liu T, Yang X. Multi-Needle Detection in 3D Ultrasound Images Using Unsupervised Order-Graph Regularized Sparse Dictionary Learning. IEEE Transactions on Medical Imaging. 2020;39(7):2302-15. https://doi.org/10.1109/TMI.2020.2968770
- Lee SJ, Lee HS. Basic Study on the Effect of Number of Hidden Layers on Performance of Estimation Model of Compressive Strength of Concrete Using Deep Learning Algorithms. J Korea Inst Build Constr.. 2018;18(1):130-41.
-
Yun JR, Chun SK, Kim HM, Kim UY. Object Recognition in
$360^{\circ}$ Streaming Video. The Korean Society of Computer Information Conference. 2019;27(2):317-8. - Bruzzone L, Prieto DF. Automatic analysis of the difference image for unsupervised change detection. IEEE Transactions on Geoscience and Remote sensing.2000;38(3):1171-82. https://doi.org/10.1109/36.843009