Ultrasonic Transducers for Medical Volumetric Imaging

  • Roh, Yong-Rae (School of Mechanical Engineering, Kyungpook National University)
  • Received : 2010.08.26
  • Accepted : 2010.09.27
  • Published : 2010.09.30

Abstract

Three-dimensional ultrasound imaging is a new, exciting technology that allows physicians to use ultrasound to view pathology as a volume, thereby enhancing comprehension of patient anatomy. In this paper, a brief history of the 3-D ultrasound imaging is described in accordance with the development of transducer technology. Then, two representative types of 3-D imaging transducers are reviewed with description of the concept and operation principle of each type: mechanical transducer and matrix array transducer. The mechanical transducer is detailed into free-hand scanning and sequential scanning types. Advantages of each transducer over the other and the technical issues for further performance enhancement are also presented.

Keywords

References

  1. F. W. Kremkau, Diagnostic Ultrasound: Principles and Instruments, 6th ed. W. B. Saunders Co., New York, 2002.
  2. J. F. Brinkley, W. E. Moritz, and D. W. Baker, "Ultrasonic threedimensional imaging and volume from a series of arbitrary sector scans," Ultrasound in Med. & Biol., vol. 4, no. 4, pp. 317-321, 1978. https://doi.org/10.1016/0301-5629(78)90020-0
  3. T. P. Abraham, J. G. Warne, Jr, N. D. Kon, et al., "Feasibility, accuracy, and incremental value of intraoperative three-dimensional transesophageal echocardiography in valve surgery. Am J Cardiol, vol. 80, pp. 1577-1582, 1997. https://doi.org/10.1016/S0002-9149(97)00783-2
  4. K. Baba, T. Okai, S. Kozuma, Y. Taketani, T. Mochizuki, and M. Akahane, "Real-time processable three-dimensional US in obstetrics," Radiology, vol. 203, pp. 571-574, 1997. https://doi.org/10.1148/radiology.203.2.9114124
  5. A. Fenster and D. B. Downey, "3-D ultrasound imaging: a review," IEEE Eng. Med. Biol., vol. 15, pp. 41-51 1996.
  6. D. H. Pretorius and T. R. Nelson, "3-Dimensional ultrasound imaging in patient diagnosis and management: The future," Ultrasound Obstet. Gynecol., vol. 1, pp. 381-382, 1991. https://doi.org/10.1046/j.1469-0705.1991.01060381.x
  7. D. H. Pretorius and T. R. Nelson, "Fetal face visualization using three-dimensional ultrasonography," J. Ultrasound Med., vol. 14, pp. 349-356, 1995. https://doi.org/10.7863/jum.1995.14.5.349
  8. K. Baba and D. Jurkovic, Three-dimensional ultrasound in obstetrics and gynecology, Parthenon Press, New York, 1997.
  9. A. Salustri and J. R. T. C. Roelandt, "Ultrasonic three-dimensional reconstruction of the heart," Ultrasound in Med. & Biol., vol. 21, no. 3, pp. 281-293, 1995. https://doi.org/10.1016/0301-5629(94)00125-W
  10. N. Bruining, C. lancee, J. R. T. C. Roelandt and N. Bom, "Three-dimensional echocardiography paves the way toward virtual reality," Ultrasound in Med. & Biol., vol. 26, no. 7, pp. 1065-1074, 2000. https://doi.org/10.1016/S0301-5629(00)00256-8
  11. K. Baba, et al:, "Development of a system for ultrasonic fetal threedimensional reconstruction," Acta Obstetrica et Gynaecologica Japonica, vol. 38, no. 8, p. 1385, 1986.
  12. K. Baba, et al, "Non-invasive three-dimensional imaging system for the fetus in utero," The Fetus as a Patient '87, Excerpta Medica (Amsterdam), pp. 111-116, 1987.
  13. K. Baba, et al, "Development of an ultrasonic system for threedimensional reconstruction of the fetus," J. Perinat. Med, vol. 17, no. 1, pp. 19-24, 1989. https://doi.org/10.1515/jpme.1989.17.1.19
  14. D. L. King, D. L. King, Jr, and M. Y. Shao. "Three-dimensional spatial registration and interactive display of position and orientation of real-time ultrasound images," J. Ultrasound Med., vol. 9, no.9, pp. 525-532, 1991.
  15. K. D. Whittingham, "3D ultrasound: the Kretztechik Voluson approach," European J. Ultrasound, vol. 1, pp. 85-89, 1994.
  16. W Feichtinger, "Transvaginal three-dimensional imaging," Ultrasound in Obstetrics and Gynecology, vol. 3, pp. 375-378, 1993. https://doi.org/10.1046/j.1469-0705.1993.03060375.x
  17. S. W. Smith, H. G. Pavy, Jr., and O. T. von Ramm, "High speed ultrasound volumetric imaging system-part I: transducer design and beam steering," IEEE Trans. Ultrasonics Ferroelectr. Freq. Control, vol. 38, no. 2, pp. 100-108, 1991. https://doi.org/10.1109/58.68466
  18. O. T. von Ramm, S. W. Smith, and H. G. Pavy, Jr., "High speed ultrasound volumetric imaging system-part II: parallel processing and image display," IEEE Trans. Ultrasonics Ferroelectr. Freq. Control, vol. 38, no. 2, pp. 109-115, 1991. https://doi.org/10.1109/58.68467
  19. R. E. Davidsen and S. W. Smith, "Multiplexed 2-D array for real time volumetric ultrasound scanning" Ultrasonic Imaging, vol. 19, pp. 235-250, 1997. https://doi.org/10.1177/016173469701900401
  20. General Electric Healthcare, Voluson Transducer Guide, USA, 2010.
  21. W. E. Moritz and P. L. Shreve, "A microprocessor based spatial locating system for use with diagnostic ultrasound," IEEE Trans. Biomed. Eng., vol. 64, pp. 966-974, 1976.
  22. D. L. Dekker, R. L. Piziali, and E. Dong, Jr., "A system for ultrasonically imaging the human heart in three dimensions," Comput. Biomed. Res., vol. 7, pp. 544-553, 1974. https://doi.org/10.1016/0010-4809(74)90031-7
  23. F. H. Raab, E. B. Blood, T. O. Steiner, et al., "Magnetic position and orientation tracking system," IEEE Trans. Aerospace Elec. Sys., vol.15, pp. 709-718, 1979.
  24. Siemens, Ultrasound Transducer Catalogue, USA, 2010.
  25. Philips, Ultrasound Transducer Catalogue, USA, 2010.
  26. Aloka, Ultrasound Transducer Catalogue, Japan, 2010.
  27. Vermon, Medical Products Catalogue, France, 2010.
  28. A. Fenster, "Three dimensional ultrasound imaging system for prostate cancer diagnosis and treatment," IEEE Instrumentation & Measurement Magazine, vol. 1, no. 4, pp. 32-35, 1998. 12. https://doi.org/10.1109/5289.735975
  29. G. Kossoff, K. A. Griffiths, and A. P. Kadi, "Transducer rotation: a useful scanning manoeuvre in three-dimensional ultrasonic volume imaging," Radiology, vol. 195, pp. 870-872, 1995. https://doi.org/10.1148/radiology.195.3.7754024
  30. E. Shin and Y. Roh, "Analysis of the backlashes in an ultrasonic transducer for volumetric imaging," Proceedings of 30th Symposium on Ultrasonic Electronics, Kyoto, Japan, pp. 245-246, 2009. 11.
  31. R. N. Rankin, A. Fenster, D. B. Downey, et al., "Three-dimensional sonographic reconstruction: techniques and diagnostic applications," American J. Roentgenology, vol. 161, pp. 695-702, 1993. https://doi.org/10.2214/ajr.161.4.8372741
  32. T. R. Nelson and D. H. Pretorius, "three-dimensional ultrasound imaging," Ultrasound in Med. & Biol., vol. 24, no. 9, pp. 1243-1270, 1998. https://doi.org/10.1016/S0301-5629(98)00043-X
  33. W. Lee, S. Lee and Y. Roh, "Optimal design of a piezoelectric 2D array transducer to minimize the cross-talk between active elements," Proceedings of IEEE Ultrasonics Symposium, Rome, Italy, pp. 2738-2741, 2009. 9.
  34. O. Oralkan, A. S. Ergun, C. H. Cheng, J. A. Johnson, M. Karaman, T. H. Lee, and B. T. Khuri-Yakub, "Volumetric ultrasound imaging using 2-D cMUT arrays," IEEE Trans. Ultrasonics Ferroelectr. Freq. Control, vol. 50, no. 11, pp. 1581-1594, 2003. https://doi.org/10.1109/TUFFC.2003.1251142
  35. B. T. Khuri-Yakub, O. Oralkan, and M. Kupnik, "Next-generation ultrasound," IEEE Spectrum, vol. 46, no. 5, pp. 40-43, 2009.