Browse > Article
http://dx.doi.org/10.12941/jksiam.2016.20.175

INDUSTRIAL MATHEMATICS IN ULTRASOUND IMAGING  

JANG, JAESEONG (DEPARTMENT OF COMPUTATIONAL SCIENCE AND ENGINEERING, YONSEI UNIVERSITY)
AHN, CHI YOUNG (DIVISION OF INTEGRATED MATHEMATICS, NATIONAL INSTITUTE FOR MATHEMATICAL SCIENCES)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.20, no.3, 2016 , pp. 175-202 More about this Journal
Abstract
Ultrasound imaging is a widely used tool for visualizing human body's internal organs and quantifying clinical parameters. Due to its advantages such as safety, non-invasiveness, portability, low cost and real-time 2D/3D imaging, diagnostic ultrasound industry has steadily grown. Since the technology advancements such as digital beam-forming, Doppler ultrasound, real-time 3D imaging and automated diagnosis techniques, there are still a lot of demands for image quality improvement, faster and accurate imaging, 3D color Doppler imaging and advanced functional imaging modes. In order to satisfy those demands, mathematics should be used properly and effectively in ultrasound imaging. Mathematics has been used commonly as mathematical modelling, numerical solutions and visualization, combined with science and engineering. In this article, we describe a brief history of ultrasound imaging, its basic principle, its applications in obstetrics/gynecology, cardiology and radiology, domestic-industrial products, contributions of mathematics and challenging issues in ultrasound imaging.
Keywords
Industrial Mathematics; Ultrasound Imaging; Ultrasound Examinations; Image Processing; Technology Advances; Mathematical Modelling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ohtsuki and M. Tanaka, The flow velocity distribution from the Doppler information on a plane in three-Dimensional flow, Journal of Visualization, 9(1) (2006), 69-82.   DOI
2 M. Arigovindan, M. Suhling, C. Jansen, P. Hunziker and M. Unser, Full motion and flow field recovery from echo Doppler data, IEEE Transactions on Medical Imaging, 26(1) (2007), 31-45.   DOI
3 A. Gomez, K. Pushparajah, J. M. Simpson, D. Giese, T. Schaeffter and G. Penney, A sensitivity analysis on 3D velocity reconstruction from multiple registered echo Doppler views, Medical Image Analysis, 17(6) (2013), 616-631.   DOI
4 A. Gomez, A. de Vecchi, M. Jantsch, W. Shi, K. Pushparajah, J. M. Simpson, N. P. Smith, D. Rueckert, T. Schaeffter and G. P. Penney, 4D blood flow reconstruction over the entire ventricle from wall motion and blood velocity derived from ultrasound data, IEEE Trans. on Medical Imaging, 34(11) (2015), 2298-2308.   DOI
5 F. Mehregan, F. Tournoux, S. Muth, Pibarot, Philippe and R. Rieu, G. Cloutier and D. Garcia, Doppler vortography:a color doppler approach to quantification of intraventricular blood flow vortices, Ultrasound in Medicine and Biology, 40(1) (2014), 210-221.   DOI
6 J. Jang, C. Y. Ahn, K. Jeon, J. Heo, D. Lee, C. Joo, J.-i. Choi and J. K. Seo, A reconstruction method of blood flow velocity in left ventricle using color flow ultrasound, Computational and Mathematical Methods in Medicine, 2015 (2015), 108274.
7 G. K. Batchelor An Introduction to Fluid Dynamics, Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK, 2000.
8 A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov and B. S. Garra, An overview of elastography -an emrging branch of medical imaging, Current Medical Imaging Reviews, 7 (2011), 255-282.   DOI
9 J. Bercoff, M. Tanter and M. Fink, Supersonic shear imaging: a new technique for soft tissue elasticity mapping, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51 (2004), 396-409.   DOI
10 K. Nightingale, S. McAleavey and G. Trahey, Shear-wave generation using acoustic radiation force: in vivo and ex vivo results, Ultrasound in Medicine & Biology, 29(12) (2003), 1715-1723.   DOI
11 N. C. Rouze, M. H.Wang, M. L. Palmeri and K. R. Nightingale, Robust estimation of time-of-flight shear wave speed using a radon sum transformation, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(12) (2010), 2662-2670.   DOI
12 P. Song, A. Manduca, H. Zhao, M. W. Urban, J. F. Greenleaf and S. Chen, Fast shear compounding using robust 2-d shear wave speed calculation and multi-directional filtering, Ultrasound in Medicine & Biology, 40(6) (2014), 1343-1355.   DOI
13 L. Ji, J. R.McLaughlin, D. Renzi and J.-R. Yoon, Interior elastodynamics inverse problems: shear wave speed reconstruction in transient elastography, Inverse Problems, 19(6) (2003), S1.   DOI
14 J. McLaughlin and D. Renzi, Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging, Inverse Problems, 22(2) (2006), 707.   DOI
15 J. McLaughlin and D. Renzi, Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts, Inverse Problems, 22(2) (2006), 681.   DOI
16 E. Y. Ko, S-Detect TM in Breast Ultrasound : Initial Experience, White Paper, WP201411-SMC-SDetect, Samsung Medison, 2014.
17 K. Lee, J. Yoo and S. Kim, A novel semi-automatic method for biometric measurements of the fetal brain, White Paper, WP201412-5D-CNS, Samsung Medison, 2014.
18 W. K. Jeong, Liver stiffness measurement using S-Shearwave : initial experience, White Paper, CS201505-SShearwave, Samsung Medison, 2015.
19 V. F. Duda and C. Kohler, An improved quantification tool for breast $ElastoScan^{TM}$ : $E-Breast^{TM}$, White Paper, WP201503-$E-Breast^{TM}$, Samsung Medison, 2015.
20 D. J. Lim and M. H. Kim, Experiences of Intrinsic Compression Ultrasound Elastography (-$E-Thyroid^{TM}$) in Differentiating Benign From Malignant Thyroid Nodule, White Paper, WP201504-$E-Thyroid^{TM}$, Samsung Medison, 2015.
21 J. H. Yoon, H. J. Chang, J.W. Kim and N. Chung The value of multi-directional movement of carotid artery as a novel surrogate marker for acute ischemic stroke assessed by Arterial Analysis, White Paper, WP201506-ArterialAnalysis, Samsung Medison, 2015.
22 A. Martegani and L. Aiani, Technological advancements improve the sensitivity of CEUS diagnostics, White Paper, WP201507-CEUS, Samsung Medison, 2015.
23 Samsung Applies Deep Learning Technology to Diagnostic Ultrasound Imaging, Samsung Newsroom, https://news.samsung.com.
24 R. A. Castellino, Computer aided detection (CAD): an overview, Cancer Imaging, 5(1) (2005), 17-19.   DOI
25 A. Jalalian, S. B. Mashohor, H. R.Mahmud, M. I. B. Saripan, A. R. B. Ramli and B. Karasfi, Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review, Clin. Imaging, 37(3) (2013), 420-426.   DOI
26 K. Doi, Computer-aided diagnosis in medical imaging: historical review, current status and future potential, Comput. Med. Imaging Graph., 31(4) (2007), 198-211.   DOI
27 S. H. Kim, J.M. Lee, K. G. Kim, J. H. Kim, J. Y. Lee, J. K. Han and B. I. Choi, Computer-aided image analysis of focal hepatic lesions in ultrasonography: preliminary results, Abdom. Imaging, 34(2) (2009), 183-191.   DOI
28 B. van Ginneken, C. M. Schaefer-Prokop and M. Prokop, Computer-aided diagnosis: how to move from the laboratory to the clinic, Radiology, 261(3) (2011), 719-732.   DOI
29 B. Lei, E. L. Tan, S. Chen, L. Zhuo, S. Li, D. Ni and T. Wang, Automatic recognition of fetal facial standard plane in ultrasound image via fisher vector, PloS one, 10(5) (2015), e0121838.   DOI
30 S. Joo, Y. S. Yang, W. K. Moon and H. C. Kim, Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features, IEEE Trans. Med. Imaging, 23(10) (2004), 1292-1300.   DOI
31 R. Llobet, J. C. Perez-Cortes, A. H. Toselli and A. Juan, Computer-aided detection of prostate cancer International Journal of Medical Informatics, 76(7) (2007), 547-556.   DOI
32 D. R. Chen, R. F. Chang,W. J. Kuo, M. C. Chen and Y. L. Huang, Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks, Ultrasound Med. Biol., 28(10) (2002), 1301-1310.   DOI
33 Y. L. Huang and D. R. Chen, Watershed segmentation for breast tumor in 2-D sonography, Ultrasound Med. Biol., 30(5) (2004), 625-632.   DOI
34 D. L. Sandulescu, D. Dumitrescu, I. Rogoveanu and A. Saftoiu, Hybrid ultrasound imaging techniques (fusion imaging), World J. Gastroenterol., 17(1) (2011), 49-52.   DOI
35 W. Wein, S. Brunke, A. Khamene, M. R. Callstrom and N. Navab, Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention, Med. Image Anal., 12(5) (2008), 577-585.   DOI
36 B. C. Porter, D. J. Rubens, J. G. Strang, J. Smith, S. Totterman and K. J. Parker, Three-dimensional registration and fusion of ultrasound and MRI using major vessels as fiducial markers, IEEE Trans. Med. Imaging, 20(4) (2001) 354-359.   DOI
37 T. Lange, N. Papenberg, S. Heldmann, J. Modersitzki, B. Fischer, H. Lamecker and P. M. Schlag, 3D ultrasound-CT registration of the liver using combined landmark-intensity information, Int. J. Comput. Assist. Radiol. Surg., 4(1) (2009), 79-88.   DOI
38 M. W. Lee, Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention, Ultrasonography, 33(4) (2014), 227-239.   DOI
39 C. Ewertsen, A. Saftoiu, L. G. Gruionu, S. Karstrup and M. B. Nielsen, Real-time image fusion involving diagnostic ultrasound, Am. J. Roentgenol., 200(3) (2013), W249-W255.   DOI
40 A. Roche, S. Pennec, G. Malandain and N. Ayache, Rigid registration of 3-D ultrasound with MR images:a new approach combining intensity and gradient information, IEEE Trans. Med. Imaging, 20(10) (2001), 1038-1049.   DOI
41 J. Jang, C. Y. Ahn, J.-I. Choi and J. K. Seo, Inverse Problem for Color Doppler Ultrasound-Assisted Intracardiac Blood Flow Imaging, Computational and Mathematical Methods in Medicine, 2016 (2016), 6371078.
42 M. H. Wang, M. L. Palmeri, V. M. Rotemberg, N. C. Rouze and K. R. Nightingale, Improving the robustness of time-of-flight based shear wave speed reconstruction methods using ransac in human liver in vivo, Ultrasound in Medicine & Biology, 36(5) (2010), 802-813.   DOI
43 Medical Equipment Market Size & Growth-Diagnostic Imaging[Ultrasound Systems] Market, Global 2006-2013, USD Constant Millions, Global Data, https://medical.globaldata.com.
44 Medical Equipment Market Size & Growth-Diagnostic Imaging[Ultrasound Systems] Market, Global 2013-2020, USD Constant Millions, Global Data, https://medical.globaldata.com.
45 Medical Equipment Market Size & Growth-Diagnostic Imaging[Ultrasound Systems] Company Shaare By Percentage, Global 2012, USD Constant Millions, Global Data, https://medical.globaldata.com.
46 T. Szabo, Diagnostic Ultrasound Imaging: Inside Out, Academic Press, Boston University, 2004.
47 D. H. Evans and W. N. McDicken, Doppler Ultrasound-Physics, Instrumentation and Signal Processing, 2nd ed., John Wiley and Sons, New York, 2000.
48 J. Woo, A short history of the developments of ultrasound in obstetrics and gynecology. http://www.obultrasound.net/hydrophone.html, 1999.
49 A.M. King, Development, advances and applications of diagnostic ultrasound in animals, The Veterinary Journal, 1713 (2006), 408-420.
50 J. Curie and P. Curie, Development par pression de l'ectricite polaire dans les cristaux hemidres a faces inclinees, Compte Rendue de l' Acadamie Scientifique, 91 (1880), 294-295.
51 K. T. Dussik, Uber die Moglichkeit, hochfrequente mechanische Schwingungen als diagnostisches Hilfsmittel zu verwerten, Zeitschrift fur die gesamte Neurologie und Psychiatrie, 174(1) (1942), 153-168.   DOI
52 G. D. Ludwig and F. W. Struthers, Considerations underlying the use of ultrasound to detect gall stones and foreign bodies in the tissues, United States Navy Medical Research Institute Report, 4 (1949), 1-27.
53 I. Donald, J. Macvicar and T. G. Brown, Investigation of abdominal masses by pulsed ultrasound, Lancet, 1 (1958), 1189-1195.
54 Y. Nimura, History of pulse and echo Doppler ultrasound in Japan, Cardiac Doppler Diagnosis, Martimus Nijoff Publishers, Boston, 1983.
55 R. W. J. Felix, B. Sigel, R. J. Gibson, J. Williams and G. L. Popky, Pulsed Doppler ultrasound detection of flow disturbances in arteriosclerosis, J. Clin. Ultrasound, 4(4) (1976), 275-282.   DOI
56 D. S. Evans and F. B. Cockett, Diagnosis of deep-vein thrombosis with an ultrasonic Doppler technique, Br. Med. J., 2 (1969), 802-804.   DOI
57 P. N. T. Wells, A range-gated ultrasonic Doppler system, Medical and Biological Engineering, 7(6) (1969), 641-652.   DOI
58 G. R. Curry and D. N. White, Color coded ultrasonic differential velocity arterial scanner (Echoflow), Ultrasound Med. Biol., 4 (1978), 27-35.   DOI
59 B. Sigel, A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease, Ultrasound Med. Biol., 24(2) (1998), 169-176.   DOI
60 J. F. Brinkley, S. K. Muramatsu, W. D. McCallum and R. L. Popp, In vitro evaluation of an ultrasonic threedimensional imaging and volume system, Ultrasonic Imaging, 4(2) (1982), 126-139.   DOI
61 K. Baba, K. Satoh, S. Sakamoto, T. Okai and S. Ishii, Development of an ultrasonic system for threedimensional reconstruction of the fetus, Journal of Perinatal Medicine-Official Journal of the WAPM, 17(1) (1989), 19-24.   DOI
62 J. Deng, J. E. Gardener, C. H. Rodeck and W. R. Lees, Fetal echocardiography in three and four dimensions, Ultrasound Med. Biol., 22(8) (1996), 979-986.   DOI
63 S. L. Kobal, S. S. Lee, R. Willner, F. E. A. Vargas, H. Luo, C. Watanabe, Y. Neuman, T. Miyamoto and R. J. Siegel, Hand-carried cardiac ultrasound enhances healthcare delivery in developing countries, Am. J. Cardiol., 94(4) (2004), 539-541.   DOI
64 H. Shmueli, Y. Burstein, I. Sagy, Z. H. Perry, R. Ilia, Y. Henkin, T. Shafat, N. Liel-Cohen and S. L. Kobal, Briefly Trained Medical Students Can Effectively Identify Rheumatic Mitral Valve Injury Using a Hand?Carried Ultrasound, Echocardiography, 30(6) (2013), 621-626.   DOI
65 J. S. Shanewise, A. T. Cheung, S. Aronson, W. J. Stewart, R. L. Weiss, J. B. Mark, R. M. Savage, P. Sears-Rogan, J. P. Mathew, M. A. Quinones, M. K. Cahalan MK and J. S. Savino, ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography, Anesth. Analg., 89(4) (1999), 870-884.   DOI
66 H. F. Andersen, Transvaginal and transabdominal ultrasonography of the uterine cervix during pregnancy, Journal of Clinical Ultrasound, 19(2) (1991), 77-83.   DOI
67 J. A. Jensen and N. B. Svendsen, Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers, IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 39 (1992), 262-267.   DOI
68 J. A. Jensen, D. Gandhi and W. D. O'Brien, Ultrasound fields in an attenuating medium, Proceedings of the IEEE 1993 Ultrasonics Symposium, 1993.
69 A. Macovski, Ultrasonic imaging using arrays, Proceedings of the IEEE, 1979.
70 J. A. Jensen, A Model for the Propagation and Scattering of Ultrasound in Tissue, J. Acoust. Soc. Am., 89 (1991), 182-191.   DOI
71 J. A. Jensen, Field: A Program for Simulating Ultrasound Systems, the 10th Nordic-Baltic Conference on Biomedical Imaging Published in Medical & Biological Engineering & Computing, 34 (1996), 351-353.
72 AIUM, AIUM Practice Parameter for the Performance of Obstetric Ultrasound Examinations, http://www.aium.org/resources/guidelines/obstetric.pdf, 2013.
73 R. Rastogi, G. L. Meena, N. Rastogi and V. Rastogi, Interstitial ectopic pregnancy: A rare and difficult clinicosonographic diagnosis, J. Hum. Reprod. Sci., 1(2) (2008), 81-82.   DOI
74 L. F. Goncalves, W. Lee, J. Espinoza and R. Romero,Three-and 4-Dimensional Ultrasound in Obstetric Practice Does It Help?, J. Ultrasound Med., 24(12) (2005), 1599-1624.   DOI
75 N. J. Dudley, A systematic review of the ultrasound estimation of fetal weight, Ultrasound Obstet. Gynecol., 25(1) (2005), 80-89.   DOI
76 S. Feng, K. S. Zhou and W. Lee, Automatic fetal weight estimation using 3D ultrasonography, Proceedings of Medical Imaging 2012: Computer-Aided Diagnosis, California, USA 2012.
77 H. Laurichesse-Delmas, O. Grimaud, G. Moscoso and Y. Ville, Color Doppler study of the venous circulation in the fetal brain and hemodynamic study of the cerebral transverse sinus, Ultrasound in Obstetrics and Gynecology, 13(1) (1999), 34-42.   DOI
78 I.-W. Lee, C.-H. Chang, Y.-C. Cheng, H.-C. Ko and F.-M. Chang, A review of three-dimensional ultrasound applications in fetal growth restriction, Journal of Medical Ultrasound, 20(3) (2012), 142-149.   DOI
79 S. Yagel, S. M. Cohen, I. Shapiro and D. V. Valsky, 3D and 4D ultrasound in fetal cardiac scanning: a new look at the fetal heart, Ultrasound Obstet. Gynecol., 29(1) (2007), 81-95.   DOI
80 B. Messing, S. M. Cohen, D. V. Valsky, D. Rosenak, D. Hochner-Celnikier, S. Savchev and S. Yagel, Fetal cardiac ventricle volumetry in the second half of gestation assessed by 4D ultrasound using STIC combined with inversion mode, Ultrasound Obstet. Gynecol., 30(2) (2007), 142-151.   DOI
81 R. K. Pooh and K. Pooh, K,. Transvaginal 3D and Doppler ultrasonography of the fetal brain, Seminars in perinatology 2001, 25(1) (2001), 38-43.
82 W. Sepulveda, I. Rojas, J. A. Robert, C. Schnapp and J. L. Alcalde, Prenatal detection of velamentous insertion of the umbilical cord: a prospective color Doppler ultrasound study, Ultrasound in obstetrics & gynecology, 21(6) (2003), 564-569.   DOI
83 D. E. Fitzgerald and J. E. Drumm, Non-invasive measurement of human fetal circulation using ultrasound: a new method, Br.Med. J., 2(6100) (1977), 1450-1451.   DOI
84 A. Dall'Asta, G. Paramasivam, C. C. Lees, Crystal Vue technique for imaging fetal spine and ribs, Ultrasound in Obstetrics & Gynecology, 47(3) (2016), 383-384.   DOI
85 T. Reynolds, The Echocardiographer's Pocket Reference, 4th Edition, Arizona Heart Institute, Phoenix, Arizona, USA, 2013.
86 M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound in Medicine & Biology, 34(9) (2008), 1373-1386.   DOI
87 E. G. Grant, C. B. Benson, G. L. Moneta, A. V. Alexandrov et al., Carotid artery stenosis: gray-scale and Doppler US diagnosis-Society of Radiologists in Ultrasound Consensus Conference, Radiology, 229(2) (2003), 340-346.   DOI
88 A. T. Stavros, D. Thickman, C. L. Rapp, M. A. Dennis, S. H. Parker and G. A. Sisney, Solid breast nodules:use of sonography to distinguish between benign and malignant lesions, Radiology, 196(1) (1995), 123-134.   DOI
89 M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley and K. R. Nightingale, Quantifying hepatic shear modulus in vivo using acoustic radiation force, Ultrasound in Medicine & Biology, 34(4) (2008), 546-558.   DOI
90 B. Lucas, T. Kanade, An iterative image restoration technique with an application to stereo vision, Proceedings of DARPA IU Workshop, (1981), 121-130.
91 J. L. Barron, D. J. Fleet, S. S. Beauchemin, Performance of optical flow techniques, Int. J. Comput. Vision, 12(1) (1994), 43-77.   DOI
92 Q. Duan, E. D. Angelini, S. L. Herz, C. M. Ingrassia, K. D. Costa, J. W. Holmes, S. Homma and A. F. Laine, Region-Based Endocardium Tracking on Real-Time Three-Dimensional Ultrasound, Ultrasound Med. Biol., 35(2) (2009), 256-265.   DOI
93 K. Y. E. Leung, M. G. Danilouchkine, M. van Stralen, N. de Jong, A. F. van der Steen and J. G. Bosch, Left ventricular border tracking using cardiac motion models and optical flow, Ultrasound Med. Biol., 37(4) (2011), 605-616.   DOI
94 D. R. Munoz, M. Markl, J. L. Moya Mur, A. Barker, C. Fernandez-Golfin, P. Lancellotti and J. L. Z. Gomez, Intracardiac flow visualization: current status and future directions, European Heart Journal-Cardiovascular Imaging, 14 (2013), 1029-1038.   DOI
95 C. Y. Ahn, Robust Myocardial Motion Tracking for Echocardiography: Variational Framework Integrating Local-to-Global Deformation, Computational and Mathematical Methods in Medicine, 2013 (2013), 974027.
96 G.-R. Hong, G. Pedrizzetti, G. Tonti, P. Li, Z. Wei, J. K. Kim, A. Baweja, S. Liu, N. Chung, H. Houle, J. Narula, and M. A. Vannan, Characterization and Quantification of Vortex Flow in the Human Left Ventricle by Contrast Echocardiography Using Vector Particle Image Velocimetry, JACC: Cardiovascular Imaging, 1(6) (2008), 705-717.   DOI
97 P. P. Sengupta, G. Pedrizzetti, P. J. Kilner, A. Kheradvar, T. Ebbers, G. Tonti, A. G. Fraser and J. Narula, Emerging Trends in CV Flow Visualization, JACC: Cardiovascular Imaging, 5(3) (2012), 305-316.   DOI
98 H. Gao, P. Claus, M.-S. Amzulescu, I. Stankovic, J. D'Hooge and J.-U. Voigt, How to optimize intracardiac blood flow tracking by echocardiographic particle image velocimetry? Exploring the influence of data acquisition using computer-generated data sets, European Heart Journal Cardiovascular Imaging, 13(6) (2012), 490-499.   DOI
99 H. Gao, B. Heyde and J. D'Hooge, 3D Intra-cardiac flow estimation using speckle tracking: a feasibility study in synthetic ultrasound data, Proceedings of the IEEE International Ultrasonics Symposium (IUS'13), Prague, Czech Republic, July 2013.
100 D. Garcia, J. C. Del Alamo, D. Tanne, R. Yotti, C. Cortina, E. Bertrand, J. C. Antoranz, E. Perez-David, R. Rieu, F. Fernandez-Aviles and others, Two-dimensional intraventricular flow mapping by digital processing conventional color-doppler echocardiography images, IEEE Transactions on Medical Imaging, 29(10) (2010), 1701-1713.   DOI