• Title/Summary/Keyword: 3D Thermal Information

Search Result 167, Processing Time 0.027 seconds

Electrical and Chemical Properties of ultra thin RT-MOCVD Deposited Ti-doped $Ta_2O_5$

  • Lee, S. J.;H. F. Luan;A. Mao;T. S. Jeon;Lee, C. h.;Y. Senzaki;D. Roberts;D. L. Kwong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.202-208
    • /
    • 2001
  • In Recent results suggested that doping $Ta_2O_5$ with a small amount of $TiO_2$ using standard ceramic processing techniques can increase the dielectric constant of $Ta_2O_5$ significantly. In this paper, this concept is studied using RTCVD (Rapid Thermal Chemical Vapor Deposition). Ti-doped $Ta_2O_5$ films are deposited using $TaC_{12}H_{30}O_5N$, $C_8H_{24}N_4Ti$, and $O_2$ on both Si and $NH_3$-nitrided Si substrates. An $NH_3$-based interface layer at the Si surface is used to prevent interfacial oxidation during the CVD process and post deposition annealing is performed in $H_2/O_2$ ambient to improve film quality and reduce leakage current. A sputtered TiN layer is used as a diffusion barrier between the Al gate electrode and the $TaTi_xO_y$ dielectric. XPS analyses confirm the formation of a ($Ta_2O_5)_{1-x}(TiO_2)_x$ composite oxide. A high quality $TaTi_xO_y$ gate stack with EOT (Equivalent Oxide Thickness) of $7{\AA}$ and leakage current $Jg=O.5A/textrm{cm}^2$ @ Vg=-1.0V has been achieved. We have also succeeded in forming a $TaTi_x/O_y$ composite oxide by rapid thermal oxidation of the as-deposited CVD TaTi films. The electrical properties and Jg-EOT characteristics of these composite oxides are remarkably similar to that of RTCVD $Ta_2O_5, suggesting that the dielectric constant of $Ta_2O_5$ is not affected by the addition of $TiO_2$.

  • PDF

Development of a Fuel Cell System Model for a Small Ship (소형 선박용 연료전지 시스템 모델 개발)

  • Bang, Eun-Shin;Kim, Young-Min;Kim, Myoung-Hwan;Park, Sang-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.569-575
    • /
    • 2020
  • In this study, a fuel cell system model for ship power was developed and verified by comparing the experimental results obtained by supplying pure oxygen. To verify the proposed model, the fuel cell output characteristics when oxygen was supplied were compared with those when air was supplied using an air compressor. In addition, the effect of the change in the thermal properties of the fuel cell system on the output of the stack was examined. Within the experimental range of this study, when pure oxygen was supplied as the cathode supply gas, the calculated and experimental voltages and outputs obtained through modeling were almost the same over the entire load range. When air was supplied instead of oxygen for the cathode supply at a constant load of 560 A, each stack voltage was approximately 14 V, the stack output was approximately 8 kW, and the stack efficiency was approximately 3 %. It was confirmed that the overall system efficiency was reduced by approximately 8 %. Among the thermal properties examined in this study, the heat transfer coefficient of the coolant to the stack was found to have the greatest effect on the output of the stack.

Synthesis of Novel (Be,Mg,Ca,Sr,Zn,Ni)3O4 High Entropy Oxide with Characterization of Structural and Functional Properties and Electrochemical Applications

  • Arshad, Javeria;Janjua, Naveed Kausar;Raza, Rizwan
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.112-125
    • /
    • 2021
  • The new emerging "High entropy materials" attract the attention of the scientific society because of their simpler structure and spectacular applications in many fields. A novel nanocrystalline high entropy (Be,Mg,Ca,Sr,Zn,Ni)3O4 oxide has been successfully synthesized through mechanochemical treatment followed by sintering and air quenching. The present research work focuses on the possibility of single-phase formation in the aforementioned high entropy oxide despite the great difference in the atomic sizes of reactant alkaline earth and 3d transition metal oxides. Structural properties of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide were explored by confirmation of its single-phase Fd-3m spinel structure by x-ray diffraction (XRD). Further, nanocrystalline nature and morphology were analyzed by scanning electron microscopy (SEM). Among thermal properties, thermogravimetric analysis (TGA) revealed that the (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is thermally stable up to a temperature of 1200℃. Whereas phase evolution in (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide before and after sintering was analyzed through differential scanning calorimetry (DSC). Electrochemical studies of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide consists of a comparison of thermodynamic and kinetic parameters of water and hydrazine hydrate oxidation. Values of activation energy for water oxidation (9.31 kJ mol-1) and hydrazine hydrate oxidation (13.93 kJ mol-1) reveal that (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is catalytically more active towards water oxidation as compared to that of hydrazine hydrate oxidation. Electrochemical impedance spectroscopy is also performed to get insight into the kinetics of both types of reactions.

A Low-Power Portable ECG Touch Sensor with Two Dry Metal Contact Electrodes

  • Yan, Long;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.300-308
    • /
    • 2010
  • This paper describes the development of a low-power electrocardiogram (ECG) touch sensor intended for the use with two dry metal electrodes. An equivalent ECG extraction circuit model encountered in a ground-free two-electrode configuration is investigated for an optimal sensor read-out circuit design criteria. From the equivalent circuit model, (1) maximum sensor resolution is derived based on the electrode's background thermal noise, which originates from high electrode-skin contact impedance, together with the input referred noise of instrumentation amplifier (IA), (2) 60 Hz electrostatic coupling from mains and motion artifact are also considered to determine minimum requirement of common mode rejection ratio (CMRR) and input impedance of IA. A dedicated ECG read-out front end incorporating chopping scheme is introduced to provide an input referred circuit noise of 1.3 ${\mu}V_{rms}$ over 0.5 Hz ~ 200 Hz, CMRR of IA > 100 dB, sensor resolution of 7 bits, and dissipating only 36 ${\mu}W$. Together with 8 bits synchronous successive approximation register (SAR) ADC, the sensor IC chip is implemented in 0.18 ${\mu}m$ CMOS technology and integrated on a 5 cm $\times$ 8 cm PCB with two copper patterned electrodes. With the help of proposed touch sensor, ECG signal containing QRS complex and P, T waves are successfully extracted by simply touching the electrodes with two thumbs.

Advanced Design Environmental With Adaptive And Knowledge-Based Finite Elements

  • Haghighi, Kamyar;Jang, Eun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1222-1229
    • /
    • 1993
  • An advanced design environment , which is based on adaptive and knowledge -based finite elements (INTELMESH), has been developed. Unlike other approaches, INTEMMESH incorporates the information about the object geometry as well as the boundary and loading conditions to generate an ${\alpha}$-priori finite element mesh which is more refined around the critical regions of the problem domain. INTEMMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading . It intelligently identifies the critical regions/points in the problem domain and utilize the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTEMMESH generates well-shaped triangular elements by applying trangulartion and Laplacian smoothing procedures. The adaptive analysis involves the intial finite elements analyze and an efficient ${\alpha}$-posteriori error analysis involves the initial finite element anal sis and an efficient ${\alpha}$-posteriori error analysis and estimation . Once a problem is defined , the system automatically builds a finite element model and analyzes the problem though automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an ${\alpha}$-priori, and near optimum mesh of the object , converges to the desired accuracy in less time and at less cost. Such an advanced design/analysis environment will provide the capability for rapid product development and reducing the design cycle time and cost.

  • PDF

Cellulose-based Nanocrystals: Sources and Applications via Agricultural Byproducts

  • Seo, Yu-Ri;Kim, Jin-Woo;Hoon, Seonwoo;Kim, Jangho;Chung, Jong Hoon;Lim, Ki-Taek
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.59-71
    • /
    • 2018
  • Purpose: Cellulose nanocrystals (CNCs) are natural polymers that have been promoted as a next generation of new, sustainable materials. CNCs are invaluable as reinforcing materials for composites because they can impart improved mechanical, chemical, and thermal properties and they are biodegradable. The purpose of this review is to provide researchers with information that can assist in the application of CNCs extracted from waste agricultural byproducts (e.g. rice husks, corncobs, pineapple leaves). Methods & Results: This paper presents the unique characteristics of CNCs based on agricultural byproducts, and lists processing methods for manufacturing CNCs from agricultural byproducts. Various mechanical treatments (microfluidization and homogenization) and chemical treatments (alkali treatment, bleaching and hydrolysis) can be performed in order to generate nanocellulose. CNC-based composite properties and various applications are also discussed. Conclusions: CNC-based composites from agricultural byproducts can be combined to meet end-use applications such as sensors, batteries, films, food packaging, and 3D printing by utilizing their properties. The review discusses applications in food engineering, biological engineering, and cellulose-based hydrogels.

4H-SiC Planar MESFET for Microwave Power Device Applications

  • Na, Hoon-Joo;Jung, Sang-Yong;Moon, Jeong-Hyun;Yim, Jeong-Hyuk;Song, Ho-Keun;Lee, Jae-Bin;Kim, Hyeong-Joon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.113-119
    • /
    • 2005
  • 4H-SiC planar MESFETs were fabricated using ion-implantation on semi-insulating substrate without recess gate etching. A modified RCA method was used to clean the substrate before each procedure. A thin, thermal oxide layer was grown to passivate the surface and then a thick field oxide was deposited by CVD. The fabricated MESFET showed good contact properties and DC/RF performances. The maximum oscillation frequency of 34 GHz and the cut-off frequency of 9.3 GHz were obtained. The power gain was 10.1 dB and the output power of 1.4 W was obtained for 1 mm-gate length device at 2 GHz. The fabricated MESFETs showed the charge trapping-free characteristics and were characterized by the extracted small-signal equivalent circuit parameters.

A Novel Atomic Layer Deposited Al2O3 Film with Diluted NH4OH for High-Efficient c-Si Solar Cell

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • In this paper, $Al_2O_3$ film deposited by thermal atomic layer deposition (ALD) with diluted $NH_4OH$ instead of $H_2O$ was suggested for passivation layer and anti-reflection (AR) coating of the p-type crystalline Si (c-Si) solar cell application. It was confirmed that the deposition rate and refractive index of $Al_2O_3$ film was proportional to the $NH_4OH$ concentration. $Al_2O_3$ film deposited with 5 % $NH_4OH$ has the greatest negative fixed oxide charge density ($Q_f$), which can be explained by aluminum vacancies ($V_{Al}$) or oxygen interstitials ($O_i$) under O-rich condition. $Al_2O_3$ film deposited with $NH_4OH$ 5 % condition also shows lower interface trap density ($D_{it}$) distribution than those of other conditions. At $NH_4OH$ 5 % condition, moreover, $Al_2O_3$ film shows the highest excess carrier lifetime (${\tau}_{PCD}$) and the lowest surface recombination velocity ($S_{eff}$), which are linked with its passivation properties. The proposed $Al_2O_3$ film deposited with diluted $NH_4OH$ is very promising for passivation layer and AR coating of the p-type c-Si solar cell.

Monitoring and Optimization of the Effects of the Blending Ratio of Corn, Sesame, and Perilla Oils on the Oxidation and Sensory Quality of Seasoned Laver Pyropia spp.

  • Cho, Suengmok;Kim, Jiyoung;Yoon, Minseok;Yang, Hyejin;Um, Min Young;Park, Joodong;Park, Eun-Jeong;Yoo, Hyunil;Baek, Jeamin;Jo, Jinho
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.27-33
    • /
    • 2015
  • Seasoned laver Pyropia spp. is one of the most well-known Korean traditional seafoods, and is becoming more popular worldwide. Various mixed oils are used in the preparation of seasoned laver; however, there is no information available regarding the effects of the blending ratio of oils on the quality of seasoned laver. In this study, the effects of the blending ratio of corn, sesame, and perilla oils on the oxidation and sensory quality of seasoned laver were monitored and optimized using a response surface methodology. An increase in the proportion of corn and sesame oils resulted in an excellent oxidation induction time, whereas a high ratio of perilla oil reduced the thermal oxidative stability of the mixed oil. In the sensory test, the seasoned laver with the highest proportion of sesame oil was preferred. The optimal blending ratio (v/v) of corn, sesame, and perilla oils for both oxidation induction time ($Y_1$) and sensory score ($Y_2$) was 92.3, 6.0, and 1.7%. Under optimal conditions, the experimental values of $Y_1$ and $Y_2$ were $4.41{\pm}0.3h$ and $5.58{\pm}0.8$points, and were similar to the predicted values (4.34 h and 5.13 points). Our results for the monitoring and optimization of the blending ratio provide useful information for seasoned laver processing companies.

Fabrication and Charactreistics of MOCVD Cu Thin Films Using (hfac)Cu(VTMOS) ((hfac)Cu(VTMOS)를 이용한 Thermal CVD Cu 박막의 제조 및 그 특성)

  • 이현종;최시영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.59-65
    • /
    • 1999
  • In this paper, we had studied the possibility of application as Cu thin films from (hfac)Cu(VTMOS) which is very stable. Cu thin films had been studied as a function of deposition temperature. Substrates used in the experiment were PVD TiN on Si wafer. Deposition conditions were as follow : deposition temperature $50^{\circ}C$. Cu thin films were analyzed by AES, four point probe, XRD and SEM. All of deposited films were very pure and some favoring of <111> planes perpendicular to the substrate surface were observed. Cu thin films had two distinct growth rates at various deposition temperature. One is the surface reaction limited region below $200^{\circ}C$, and the other is the mass transport limited region above $200^{\circ}C$. The resistivity of deposited Cu thin films under the optimum deposition condition is $2.5mu\Omega.cm$ Thus, properties of deposited Cu thin films using (hfac)Cu(VTMOS) didn't show difference with Cu thin films from other precursors.

  • PDF