Browse > Article
http://dx.doi.org/10.5307/JBE.2018.43.1.059

Cellulose-based Nanocrystals: Sources and Applications via Agricultural Byproducts  

Seo, Yu-Ri (Department of Biosystems Engineering, Kangwon National University)
Kim, Jin-Woo (Department of Biological and Agricultural Engineering and Institute for Nanoscience and Engineering, University of Arkansas)
Hoon, Seonwoo (Department of Industrial Machinery Engineering, Sunchon National University)
Kim, Jangho (Department of Rural and Biosystems Engineering, Chonnam National University)
Chung, Jong Hoon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Lim, Ki-Taek (Department of Biosystems Engineering, Kangwon National University)
Publication Information
Journal of Biosystems Engineering / v.43, no.1, 2018 , pp. 59-71 More about this Journal
Abstract
Purpose: Cellulose nanocrystals (CNCs) are natural polymers that have been promoted as a next generation of new, sustainable materials. CNCs are invaluable as reinforcing materials for composites because they can impart improved mechanical, chemical, and thermal properties and they are biodegradable. The purpose of this review is to provide researchers with information that can assist in the application of CNCs extracted from waste agricultural byproducts (e.g. rice husks, corncobs, pineapple leaves). Methods & Results: This paper presents the unique characteristics of CNCs based on agricultural byproducts, and lists processing methods for manufacturing CNCs from agricultural byproducts. Various mechanical treatments (microfluidization and homogenization) and chemical treatments (alkali treatment, bleaching and hydrolysis) can be performed in order to generate nanocellulose. CNC-based composite properties and various applications are also discussed. Conclusions: CNC-based composites from agricultural byproducts can be combined to meet end-use applications such as sensors, batteries, films, food packaging, and 3D printing by utilizing their properties. The review discusses applications in food engineering, biological engineering, and cellulose-based hydrogels.
Keywords
Agricultural byproducts; Biological engineering; Biomaterials; Cellulose nanocrystals; Food engineering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Peppas, N. A., K. M. Wood and J. O. Blanchette. 2004. Hydrogels for oral delivery of therapeutic proteins. Expert Opinion on Biological Therapy 4(6): 881-887.   DOI
2 PErez, S. and D. Samain. 2010. Structure and engineering of celluloses. Advances in Carbohydrate Chemistry and Biochemistry 64: 25-116.
3 Roman, M., S. Dong, A. Hirani and Y. W. Lee. 2009. Cellulose nanocrystals for drug delivery. ACS Publication 4: 81-91.
4 Roy, D., M. Semsarilar, J. T. Guthrie and S. Perrier. 2009. Cellulose modification by polymer grafting: A review. Chemical Society Reviews 38(7): 2046-2064.   DOI
5 Sadasivuni, K. K., A. Kafy, L. Zhai, H. U. Ko, S. Mun and J. Kim. 2015. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11(8): 994-1002.   DOI
6 Sadasivuni, K. K., D. Ponnamma, H.-U. Ko, H. C. Kim, L. Zhai and J. Kim. 2016. Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites. Sensors and Actuators B: Chemical 233: 633-638.   DOI
7 Sakurada, I., Y. Nukushina and T. Ito. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science Part A: Polymer Chemistry 57(165): 651-660.
8 Dufresne, A. 2012. From Nature to High Performance Tailored Materials. Berlin, Germany: Walter de Gruyter.
9 Edwards, J. V., N. Prevost, K. Sethumadhavan, A. Ullah and B. Condon. 2013. Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity. Cellulose 20(3): 1223-1235.   DOI
10 Salmieri, S., F. Islam, R. A. Khan, F. M. Hossain, H. M. Ibrahim, C. Miao and M. Lacroix. 2014. Antimicrobial nanocomposite films made of poly (lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: Part A-effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose 21(3): 1837-1850.   DOI
11 Fortunati, E., I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai and J. Kenny. 2012. Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate Polymers 87(2): 1596-1605.   DOI
12 Eichhorn, S., C. Baillie, N. Zafeiropoulos, L. Mwaikambo, M. Ansell, A. Dufresne and L. Groom. 2001. Current international research into cellulosic fibres and composites. Journal of Materials Science 36(9): 2107-2131.   DOI
13 Eyley, S. and W. Thielemans. 2014. Surface modification of cellulose nanocrystals. Nanoscale 6(14): 7764-7779.   DOI
14 Favier, V., H. Chanzy and J. Cavaille. 1995. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18): 6365-6367.   DOI
15 Fortunati, E., F. Luzi, A. Jimenez, D. Gopakumar, D. Puglia, S. Thomas, L. Torre. 2016. Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydrate Polymers 149: 357-368.   DOI
16 Fortunati, E., F. Luzi, D. Puglia, F. Dominici, C. Santulli, J. Kenny and L. Torre. 2014. Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal 56: 77-91.   DOI
17 Fortunati, E., D. Puglia, M. Monti, C. Santulli, M. Maniruzzaman and J. Kenny. 2013. Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. Journal of Applied Polymer Science 128(5): 3220-3230.   DOI
18 Silverio, H. A., W. P. F. Neto, N. O. Dantas and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products 44: 427-436.   DOI
19 Sannino, A., C. Demitri and M. Madaghiele. 2009. Biodegradable cellulose-based hydrogels: Design and applications. Materials 2(2): 353-373.   DOI
20 Shi, Q., C. Zhou, Y. Yue, W. Guo, Y. Wu and Q. Wu. 2012. Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydrate Polymers 90(1): 301-308.   DOI
21 Sinha, A., E. M. Martin, K. T. Lim, D. J. Carrier, H. Han, V. P. Zharov and J. W. Kim. 2015. Cellulose nanocrystals as advanced "green" materials for biological and biomedical engineering. Journal of Biosystems Engineering 40(4): 373-393.   DOI
22 Siro, I. and D. Plackett. 2010. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3): 459-494.   DOI
23 Smith, H. D. 1937. The Structure of Cellulose. Textile Research 7(12): 453-460.
24 Sturcova, A., G. R. Davies and S. J. Eichhorn. 2005. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2): 1055-1061.   DOI
25 Vilela, C., R. J. B. Pinto, A. R. P. Figueiredo, C. P. Neto, A. J. D. Silvestre and C. S. R. Freire. 2017. Development and applications of cellulose nanofibres based polymer nanocomposites. In: Advanced Composite Materials: Properties and Applications. ed. E. Bafekrpour, pp. 1-65. Berlin, Germany: Walter de Gruyter.
26 Akhlaghi, S. P., R. C. Berry and K. C. Tam. 2013. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4): 1747-1764.   DOI
27 Wu, Q., Y. Meng, K. Concha, S. Wang, Y. Li, L. Ma and S. Fu. 2013. Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton. Industrial Crops and Products 48: 28-35.   DOI
28 Agarwal, U. P., R. Sabo, R. S. Reiner, C. M. Clemons and A. W. Rudie. 2012. Spatially resolved characterization of cellulose nanocrystal-polypropylene composite by confocal raman microscopy. Applied spectroscopy 66(7): 750-756.   DOI
29 Agustin, M. B., B. Ahmmad, S. M. M. Alonzo and F. M. Patriana. 2014. Bioplastic based on starch and cellulose nanocrystals from rice straw. Journal of Reinforced Plastics and Composites 33(24): 2205-2213.   DOI
30 Agustin, M. B., B. Ahmmad, E. R. P. De Leon, J. L. Buenaobra, J. R. Salazar and F. Hirose. 2013. Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polymer Composites 34(8): 1325-1332.   DOI
31 Habibi, Y., L. A. Lucia and O. J. Rojas. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500.   DOI
32 Gardner, D. J., G. S. Oporto, R. Mills and M. A. S. A. Samir. 2008. Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology 22(5-6): 545-567.   DOI
33 Gassan, J. and A. K. Bledzki. 1999. Alkali treatment of jute fibers: relationship between structure and mechanical properties. Journal of Applied Polymer Science 71(4): 623-629.   DOI
34 Gkioni, K., S. C. Leeuwenburgh, T. E. Douglas, A. G. Mikos and J. A. Jansen. 2010. Mineralization of hydrogels for bone regeneration. Tissue Engineering Part B: Reviews 16(6): 577-585.   DOI
35 Hamad, W. 2006. On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. The Canadian Journal of Chemical Engineering 84(5): 513-519.   DOI
36 Helbert, W., J. Cavaille and A. Dufresne. 1996. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polymer Composites 17(4): 604-611.   DOI
37 Zhou, C., Q. Shi, W. Guo, L. Terrell, A. T. Qureshi, D. J. Hayes and Q. Wu. 2013. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Applied Materials & Interfaces 5(9): 3847-3854.   DOI
38 Xu, X., F. Liu, L. Jiang, J. Zhu, D. Haagenson and D. P. Wiesenborn. 2013. Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces 5(8): 2999-3009.   DOI
39 Yuan, H., Y. Nishiyama, M. Wada and S. Kuga. 2006. Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7(3): 696-700.   DOI
40 Zainuddin, S. Y. Z., I. Ahmad, H. Kargarzadeh, I. Abdullah and A. Dufresne. 2013. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydrate Polymers 92(2): 2299-2305.   DOI
41 Zhou, C., Q. Wu, T. Lei and I. I. Negulescu. 2014. Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical Engineering Journal 251: 17-24.   DOI
42 Wang, H. and M. Roman. 2011. Formation and properties of chitosan− cellulose nanocrystal polyelectrolyte−macroion complexes for drug delivery applications. Biomacromolecules 12(5): 1585-1593.   DOI
43 Jiang, F. and Y. L. Hsieh. 2015. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers 122: 60-68.   DOI
44 Arrieta, M., E. Fortunati, F. Dominici, E. Rayon, J. Lopez and J. Kenny. 2014. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydrate Polymers 107: 16-24.   DOI
45 Ashori, A. 2008. Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technology 99(11): 4661-4667.   DOI
46 Bardiya, N., D. Somayaji and S. Khanna. 1996. Biomethanation of banana peel and pineapple waste. Bioresource Technology 58(1): 73-76.   DOI
47 Huq, T., S. Salmieri, A. Khan, R. A. Khan, C. Le Tien, B. Riedl and M. R. Kamal. 2012. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymers 90(4): 1757-1763.   DOI
48 Jiang, F., S. Han and Y.-L. Hsieh. 2013. Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Advances 3(30): 12366-12375.   DOI
49 Juntao, T. 2016. Functionalized Cellulose Nanocrystals (CNC) for Advanced Applications. PhD diss. University of Waterloo, Department of Chemical Engineering.
50 Johar, N., I. Ahmad and A. Dufresne. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products 37(1): 93-99.   DOI
51 Kaboorani, A., B. Riedl, P. Blanchet, M. Fellin, O. Hosseinaei and S. Wang. 2012. Nanocrystalline cellulose (NCC): A renewable nano-material for polyvinyl acetate (PVA) adhesive. European Polymer Journal 48(11): 1829-1837.   DOI
52 Kalia, S., S. Boufi, A. Celli and S. Kango. 2014. Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science 292(1): 5-31.   DOI
53 Kalia, S., A. Dufresne, B. M. Cherian, B. S. Kaith, L. Averous, J. Njuguna and E. Nassiopoulos. 2011. Cellulose-based bio-and nanocomposites: a review. International Journal of Polymer Science.
54 Cao, X., H. Dong and C. M. Li. 2007. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3): 899-904.   DOI
55 Battegazzore, D., S. Bocchini, J. Alongi, A. Frache and F. Marino. 2014. Cellulose extracted from rice husk as filler for poly (lactic acid): preparation and characterization. Cellulose 21(3): 1813-1821.   DOI
56 Ben Azouz, K., E. C. Ramires, W. Van den Fonteyne, N. El Kissi and A. Dufresne. 2011. Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Letters 1(1): 236-240.   DOI
57 Cao, X., Y. Chen, P. Chang, A. Muir and G. Falk. 2008. Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polymer Letters 2(7): 502-510.   DOI
58 Khan, A., R. A. Khan, S. Salmieri, C. Le Tien, B. Riedl, J. Bouchard and M. Lacroix. 2012. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers 90(4): 1601-1608.   DOI
59 Kargarzadeh, H., I. Ahmad, I. Abdullah, A. Dufresne, S. Y. Zainudin and R. M. Sheltami. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3): 855-866.   DOI
60 Khalil, H. A., A. Bhat and A. I. Yusra. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87(2): 963-979.   DOI
61 Khan, A., K. D. Vu, G. Chauve, J. Bouchard, B. Riedl and M. Lacroix. 2014. Optimization of microfluidization for the homogeneous distribution of cellulose nanocrystals (CNCs) in biopolymeric matrix. Cellulose 21(5): 3457-3468.   DOI
62 Chen, Y., C. Liu, P. R. Chang, X. Cao and D. P. Anderson. 2009. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydrate Polymers 76(4): 607-615.   DOI
63 Cha, D. S., J. H. Choi, M. S. Chinnan and H. J. Park. 2002. Antimicrobial films based on Na-alginate and ls in waterbornLWT-Food Science and Technology 35(8): 715-719.   DOI
64 Chang, C., A. Lue and L. Zhang. 2008. Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromolecular Chemistry and Physics 209(12): 1266-1273.   DOI
65 Chen, D., D. Lawton, M. Thompson and Q. Liu. 2012. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydrate Polymers 90(1): 709-716.   DOI
66 Choi, Y. and J. Simonsen. 2006. Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. Journal of Nanoscience and Nanotechnology 6(3): 633-639.   DOI
67 Lin, N., G. Chen, J. Huang, A. Dufresne and P. R. Chang. 2009. Effects of polymer‐grafted natural nanocrystals on the structure and mechanical properties of poly (lactic acid): A case of cellulose whisker‐graft‐polycaprolactone. Journal of Applied Polymer Science 113(5): 3417-3425.   DOI
68 Lalia, B. S., Y. A. Samad and R. Hashaikeh. 2013. Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermo-mechanical performance. Journal of Solid State Electrochemistry 17(3): 575-581.   DOI
69 Lam, E., K. B. Male, J. H. Chong, A. C. Leung and J. H. Luong. 2012. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology 30(5): 283-290.   DOI
70 Li, V. C. F., C. K. Dunn, Z. Zhang, Y. Deng and H. J. Qi. 2017. Direct Ink Write (DIW) 3D printed cellulose nanocrystal aerogel structures. Scientific Reports 7(1): 8018.   DOI
71 Lin, N. and A. Dufresne. 2014. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal 59: 302-325.   DOI
72 Lin, N., J. Huang, P. R. Chang, J. Feng and J. Yu. 2011. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydrate Polymers 83(4): 1834-1842.   DOI
73 Liu, R., H. Yu and Y. Huang. 2005. Structure and morphology of cellulose in wheat straw. Cellulose 12(1): 25-34.   DOI
74 Lu, P. and Y.-L. Hsieh. 2010. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers 82(2): 329-336.   DOI
75 Luduena, L., D. Fasce, V. A. Alvarez and P. M. Stefani. 2011. Nanocellulose from rice husk following alkaline treatment to remove silica. BioResources 6(2): 1440-1453.
76 Modulevsky, D. J., C. Lefebvre, K. Haase, Z. Al-Rekabi and A. E. Pelling. 2014. Apple derived cellulose scaffolds for 3D mammalian cell culture. PloS one 9(5): e97835.   DOI
77 Dai, H. and H. Huang. 2016. Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Carbohydrate Polymers 148: 1-10.   DOI
78 De France, K. J., K. J. Chan, E. D. Cranston and T. Hoare. 2016. Enhanced mechanical properties in cellulose nanocrystal-poly (oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17(2): 649-660.   DOI
79 De Menezes, A. J., G. Siqueira, A. A. Curvelo and A. Dufresne. 2009. Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19): 4552-4563.   DOI
80 Mascheroni, E., R. Rampazzo, M. A. Ortenzi, G. Piva, S. Bonetti and L. Piergiovanni. 2016. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23(1): 779-793.   DOI
81 Moon, R. J., A. Martini, J. Nairn, J. Simonsen and J. Youngblood. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40(7): 3941-3994.   DOI
82 Nawirska, A. and M. Kwasniewska. 2005. Dietary fibre fractions from fruit and vegetable processing waste. Food Chemistry 91(2): 221-225.   DOI
83 Dong, H., K. E. Strawhecker, J. F. Snyder, J. A. Orlicki, R. S. Reiner and A. W. Rudie. 2012. Cellulose nanocrystals as a reinforcing material for electrospun poly (methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydrate Polymers 87(4): 2488-2495.   DOI
84 Ditzel, F. I., E. Prestes, B. M. Carvalho, I. M. Demiate and L. A. Pinheiro. 2017. Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydrate Polymers 157: 1577-1585.   DOI
85 Domingues, R. M., M. E. Gomes and R. L. Reis. 2014. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15(7): 2327-2346.   DOI
86 Domingues, R. M., M. Silva, P. Gershovich, S. Betta, P. Babo, S. G. Caridade and M. E. Gomes. 2015. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjugate Chemistry 26(8): 1571-1581.   DOI
87 Dos Santos, R. M., W. P. F. Neto, H. A. Silvério, D. F. Martins, D. F. Dantas and D. Pasquini. 2013. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products 50: 707-714.   DOI
88 Ntoutoume, G. M. N., R. Granet, J. P. Mbakidi, F. Brégier, D. Y. Léger, C. Fidanzi-Dugas and V. Sol. 2016. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorganic & Medicinal Chemistry Letters 26(3): 941-945.   DOI
89 Neto, W. P. F., H. A. Silverio, N. O. Dantas and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-soy hulls. Industrial Crops and Products 42: 480-488.   DOI
90 Nickerson, R. and J. Habrle. 1947. Cellulose intercrystalline structure. Industrial & Engineering Chemistry 39(11): 1507-1512.   DOI
91 O'sullivan, A. C. 1997. Cellulose: the structure slowly unravels. Cellulose 4(3): 173-207.   DOI
92 Ooi, S. Y., I. Ahmad and M. C. I. M. Amin. 2016. Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Industrial Crops and Products 93: 227-234.   DOI
93 Pei, A., N. Butchosa, L. A. Berglund and Q. Zhou. 2013. Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9(6): 2047-2055.   DOI
94 Oun, A. A. and J.-W. Rhim. 2016. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers 150: 187-200.   DOI
95 Pauly, M., P. Albersheim, A. Darvill and W. S. York. 1999. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. The Plant Journal 20(6): 629-639.   DOI