Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01130

Synthesis of Novel (Be,Mg,Ca,Sr,Zn,Ni)3O4 High Entropy Oxide with Characterization of Structural and Functional Properties and Electrochemical Applications  

Arshad, Javeria (Department of Chemistry, Quaid-i-Azam University)
Janjua, Naveed Kausar (Department of Chemistry, Quaid-i-Azam University)
Raza, Rizwan (Department of Physics COMSATS Institute of Information Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.1, 2021 , pp. 112-125 More about this Journal
Abstract
The new emerging "High entropy materials" attract the attention of the scientific society because of their simpler structure and spectacular applications in many fields. A novel nanocrystalline high entropy (Be,Mg,Ca,Sr,Zn,Ni)3O4 oxide has been successfully synthesized through mechanochemical treatment followed by sintering and air quenching. The present research work focuses on the possibility of single-phase formation in the aforementioned high entropy oxide despite the great difference in the atomic sizes of reactant alkaline earth and 3d transition metal oxides. Structural properties of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide were explored by confirmation of its single-phase Fd-3m spinel structure by x-ray diffraction (XRD). Further, nanocrystalline nature and morphology were analyzed by scanning electron microscopy (SEM). Among thermal properties, thermogravimetric analysis (TGA) revealed that the (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is thermally stable up to a temperature of 1200℃. Whereas phase evolution in (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide before and after sintering was analyzed through differential scanning calorimetry (DSC). Electrochemical studies of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide consists of a comparison of thermodynamic and kinetic parameters of water and hydrazine hydrate oxidation. Values of activation energy for water oxidation (9.31 kJ mol-1) and hydrazine hydrate oxidation (13.93 kJ mol-1) reveal that (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is catalytically more active towards water oxidation as compared to that of hydrazine hydrate oxidation. Electrochemical impedance spectroscopy is also performed to get insight into the kinetics of both types of reactions.
Keywords
High Entropy Oxide; Electrocatalysis; Cyclic Voltammetry; Electrochemical Impedance Spectroscopy; Oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater., 2004, 6(5), 299-303.   DOI
2 J.-W. Yeh, JOM., 2013, 65(12), 1759-1771.   DOI
3 R. Z. Zhang, M. J. Reece, J. Mater. Chem. A., 2019, 7(39), 22148-22162.   DOI
4 B. Cantor, I. Chang, P. Knight, A. Vincent, Mat. Sci. Eng. A., 2004, 375-377, 213-218.   DOI
5 J.W. Yeh, S.J. Lin, J. Mater. Res., 2018, 33(19), 3129-3137.   DOI
6 A. Hana, N. K. Janjua, T. Subhani, J. Ahmad, F. Ali, H. B. Awais, Mater. Res. Express 2019, 6(10), 106585.   DOI
7 B. S. Murty, J.-W. Yeh, S. Ranganathan, High-entropy alloys, 2014, 13-35
8 R. B. Nair, H. S. Arora, S. Mukherjee, S. Singh, H. Singh, H. S. Grewal, Ultrason. Sonochem., 2018, 41, 252-260.   DOI
9 X. Feng, J. Zhang, Z. Xia, W. Fu, K. Wu, G. Liu, J. Sun, Mater. Lett., 2018, 210, 84-87.   DOI
10 S. Guo, C. T. Liu, Prog. Nat. Sci.: Mater. Int, 2011, 21, 433-446.   DOI
11 D. B. Miracle, J. D. Miller, O. N. Senkov, C. Woodward, M. D. Uchic, J. Tiley, Entropy 2014, 16(19), 494-525.   DOI
12 C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, J. P. Maria, Nat. Commun., 2015, 6(1), 1-8.
13 S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, Scr. Mater., 2018, 142, 116-120.   DOI
14 A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, J. Eur. Ceram. Soc., 2018, 38(5), 2318-2327.   DOI
15 V. I. Sachkov, R. A. Nefedov, I. V. Amelichkin, IOP Conf. Ser: Mater. Sci. Eng., 2019, 597(1), 012005.
16 R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V. S. K. Chakravadhanula, C. Kubel, S. S. Bhattacharya, A. S. Gandhi, H. Hahn, Mater. Res. Lett., 2017, 5(2), 102-109.   DOI
17 D. Berardan, S. Franger, D. Dragoe, A. K. Meena, N. Dragoe, Phys. Status Solidi RRL., 2016, 10(4), 328-333.   DOI
18 D. Berardan, S. Franger, A. K. Meena, N. Dragoe, J. Mater. Chem. A., 2016, 4(24), 9536-9541.   DOI
19 A. Mujtaba, N. K. Janjua, J. Electroanal. Chem., 2016, 763, 125-133.   DOI
20 A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kubel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, B. Breitung., Nat.Commun., 2018, 9(1), 1-9.   DOI
21 J. Dabrowa, M. Stygar, A. Mikula, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Mater. Lett., 2018, 216, 32-36.   DOI
22 J.S. Shie, R.H. Fann, Ferroelectrics., 1981, 37(1), 697-700.   DOI
23 S. Cao, F. (F.) Tao, Y. Tang, Y. Li, J. Yu, Chem. Soc. Rev., 2016, 45(17), 4747-4765.   DOI
24 I. Arvanitidis, D. Sichen, S. Seetharaman, H. Y. Sohn, Metall. Mater. Trans. B., 1997, 28(6), 1063-1068.   DOI
25 D. F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal, E. Fabbri, C. Coperet, T. J. Schmidt, Chem. Mater., 2016, 28(18), 6591-6604.   DOI
26 G. Anand, A. P. Wynn, C. M. Handley, C. L. Freeman, Acta Mater., 2018, 146, 119-125.   DOI
27 S. A. Robbins, R. G. Rupard, B. J. Weddle, T. R. Maull, P. K. Gallagher, Thermochim. Acta., 1995, 269, 43-49.   DOI
28 R. Kripal, A. K. Gupta, R. K. Srivastava, S. K. Mishra, Spectrochim. Acta, Part A., 2011, 79(5), 1605-1612.   DOI
29 R. K. Datta, R. Roy, Nature., 1961, 191(4784), 169-170.   DOI
30 D. Zu, H. Wang, S. Lin, G. Ou, H. Wei, S. Sun, H. Wu, Nano Res., 2019, 1-14.
31 S. Dhillon, R. Kant, J. Chem. Sci. 2017, 129(8), 1277-1292.   DOI
32 L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q. K. Xue, X. Du, Phys. Rev. B 2016, 93, 235-305.
33 W. J. Liu, X. D. Tang, Z. Tang, W. Bai, N. Y. Tang, Adv. Condens. Matter Phys. 2013, 2013.
34 R. K. Singh, R. Devivaraprasad, T. Kar, A. Chakraborty, M. Neergat, J. Electrochem. Soc. 2015, 162(6), F489.   DOI
35 A. S. A. Khan, R Ahmed, M. L. Mirza, Port. Electrochim. Acta 2009, 27(4), 429-441.   DOI
36 B. Wang, X. Cao, Electroanalysis 1992, 4(7), 719-724.   DOI
37 D. Banerjea, I. P. Sing, Z. Anorg. Chem. 1967, 349(3-4), 213-219.   DOI
38 H. Gaunt, E. A. M. Wetton, J. appl. Chem. 1966, 16(6), 171-176.   DOI
39 E. Chrzescijanska, E. Wudarska, E. Kusmierek, J. Rynkowski, J. Electroanal. Chem. 2014, 713, 17-21.   DOI
40 M. Sarno, E. Ponticorvo, Electrochem. Commun. 2019, 107, 106510.   DOI
41 L. Qiu, H. Zhang, W. Wang, Y. Chen, R. wang, Appl. Surf. Sci. 2014, 319, 339-343.   DOI
42 G. Chen, C. C. Waraksa, H. Cho, D. D. Macdonald, T. E. Mallouk, J. Electrochem. Soc. 2003, 150(9), 423-428.
43 Y. Zuo, R. Pang, W. Li, J. P. Xiong, Y.M. Tang, Corros. Sci. 2008, 50(12), 3322-3328.   DOI
44 R. L. Doyle, M. E. G. Lyons, Phys. Chem. Chem. Phys. 2013, 15(14), 5224-5237.   DOI
45 M. E. G. Lyons, M. P. Brandon, J. Electroanal. Chem. 2009, 631(1-2), 62-70.   DOI
46 M. E. G. Lyons, M. P. Brandon, Int. J. Electrochem. Sci. 2008, 3, 1368-1424
47 P. P. Wu, F. J. Xu, K. K. Deng, F. Y. Han, Z. Z. Zhang, R. Gao, Corros. Sci. 2017, 127, 280-290.   DOI
48 C. S. Hsu, Nian. T. Suen, Y. Y. Hsu, H. Y. Lin, C. W. Tung, Y. F. Liao, T. S. Chan, H. S. Sheu, S. Y. Chen and H. M. Chen, Phys. Chem. Chem. Phys. 2017, 19(13), 8681-8693.   DOI
49 R. Nimal, S. Aftab, U. A. Rana, A. Lashin, S. U. -D. Khan, S. Ali, H. B. Kraatz, A. Shah, J. Electrochem. Soc. 2016, 163(10), H871.   DOI
50 R. Zahn, G. Coullerez, J. Voros, T. Zambelli, J. Mater. Chem. 2012, 22(22), 11073-11078.   DOI