• 제목/요약/키워드: 3-Lie algebra

검색결과 45건 처리시간 0.023초

ROTA-BAXTER OPERATORS OF 3-DIMENSIONAL HEISENBERG LIE ALGEBRA

  • Ji, Guangzhi;Hua, Xiuying
    • Korean Journal of Mathematics
    • /
    • 제26권1호
    • /
    • pp.53-60
    • /
    • 2018
  • In this paper, we consider the question of the Rota-Baxter operators of 3-dimensional Heisenberg Lie algebra on ${\mathbb{F}}$, where ${\mathbb{F}}$ is an algebraic closed field. By using the Lie product of the basis elements of Heisenberg Lie algebras, all Rota-Baxter operators of 3-dimensional Heisenberg Lie algebras are calculated and left symmetric algebras of 3-dimensional Heisenberg Lie algebra are determined by using the Yang-Baxter operators.

DERIVATIONS OF A COMBINATORIAL LIE ALGEBRA

  • Choi, Seul Hee
    • 호남수학학술지
    • /
    • 제36권3호
    • /
    • pp.493-503
    • /
    • 2014
  • We consider the simple antisymmetrized algebra $N(e^{A_P},n,t)_1^-$. The simple non-associative algebra and its simple subalgebras are defined in the papers [1], [3], [4], [5], [6], [8], [13]. Some authors found all the derivations of an associative algebra, a Lie algebra, and a non-associative algebra in their papers [2], [3], [5], [7], [9], [10], [13], [15], [16]. We find all the derivations of the Lie subalgebra $N(e^{{\pm}x_1x_2x_3},0,3)_{[1]}{^-}$ of $N(e^{A_p},n,t)_k{^-}$ in this paper.

COHOMOLOGY AND DEFORMATIONS OF HOM-LIE-YAMAGUTI COLOR ALGEBRAS

  • Issa, A. Nourou
    • Korean Journal of Mathematics
    • /
    • 제29권2호
    • /
    • pp.271-291
    • /
    • 2021
  • Hom-Lie-Yamaguti color algebras are defined and their representation and cohomology theory is considered. The (2, 3)-cocycles of a given Hom-Lie-Yamaguti color algebra T are shown to be very useful in a study of its deformations. In particular, it is shown that any (2, 3)-cocycle of T gives rise to a Hom-Lie-Yamaguti color structure on T⊕V , where V is a T-module, and that a one-parameter infinitesimal deformation of T is equivalent to that a (2, 3)-cocycle of T (with coefficients in the adjoint representation) defines a Hom-Lie-Yamaguti color algebra of deformation type.

DERIVATIONS OF THE ODD CONTACT LIE ALGEBRAS IN PRIME CHARACTERISTIC

  • Cao, Yan;Sun, Xiumei;Yuan, Jixia
    • 대한수학회지
    • /
    • 제50권3호
    • /
    • pp.591-605
    • /
    • 2013
  • The underlying field is of characteristic $p$ > 2. In this paper, we first use the method of computing the homogeneous derivations to determine the first cohomology of the so-called odd contact Lie algebra with coefficients in the even part of the generalized Witt Lie superalgebra. In particular, we give a generating set for the Lie algebra under consideration. Finally, as an application, the derivation algebra and outer derivation algebra of the Lie algebra are completely determined.

CHARACTERIZATIONS OF BIHOM-ALTERNATIVE(-LEIBNIZ) ALGEBRAS THROUGH ASSOCIATED BIHOM-AKIVIS ALGEBRAS

  • Sylvain Attan
    • Korean Journal of Mathematics
    • /
    • 제32권3호
    • /
    • pp.425-438
    • /
    • 2024
  • BiHom-Akivis algebras are introduced. It is shown that BiHom-Akivis algebras can be obtained either from Akivis algebras by twisting along two algebra morphisms or from a regular BiHom-algebra via the BiHom-commutator-BiHom-associator algebra. It is also proved that a BiHom-Akivis algebra associated to a regular BiHom-alternative algebra is a BiHom-Malcev algebra. Using the BiHom-Akivis algebra associated to a given regular BiHom-Leibniz algebra, a necessary and sufficient condition for BiHom-Lie admissibility of BiHom-Leibniz algebras is obtained.

AUTOMORPHISMS OF A WEYL-TYPE ALGEBRA I

  • Choi, Seul-Hee
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.45-52
    • /
    • 2006
  • Every non-associative algebra L corresponds to its symmetric semi-Lie algebra $L_{[,]}$ with respect to its commutator. It is an interesting problem whether the equality $Aut{non}(L)=Aut_{semi-Lie}(L)$ holds or not [2], [13]. We find the non-associative algebra automorphism groups $Aut_{non}\; \frac\;{(WN_{0,0,1}_{[0,1,r_1...,r_p])}$ and $Aut_{non-Lie}\; \frac\;{(WN_{0,0,1}_{[0,1,r_1...,r_p])}$ where every automorphism of the automorphism groups is the composition of elementary maps [3], [4], [7], [8], [9], [10], [11]. The results of the paper show that the F-algebra automorphism groups of a polynomial ring and its Laurent extension make easy to find the automorphism groups of the algebras in the paper.

UNIT KILLING VECTORS AND HOMOGENEOUS GEODESICS ON SOME LIE GROUPS

  • Yi, Seunghun
    • 충청수학회지
    • /
    • 제19권3호
    • /
    • pp.291-297
    • /
    • 2006
  • We find unit Killing vectors and homogeneous geodesics on the Lie group with Lie algebra $\mathbf{a}{\oplus}_p\mathbf{r}$, where $\mathbf{a}$ and $\mathbf{r}$ are abelian Lie algebra of dimension n and 1, respectively.

  • PDF

ON SUBREGULAR POINTS FOR SOME CASES OF LIE ALGEBRA

  • KIM, Y.K.;SO, K.H.;SEO, G.S.;PARK, D.Y.;CHOI, S.H.
    • 호남수학학술지
    • /
    • 제19권1호
    • /
    • pp.21-27
    • /
    • 1997
  • We shall define three kinds of points for algebraic varieties associated to the center 3 of U(L) which is the universal enveloping algebra of a finite-dimensional modular Lie algebra over an algebraically closed field F of prime characteristic p. We announce here that $sp_4$(F) with p = 2 has a subregular point.

  • PDF

A NOTE ON A WEYL-TYPE ALGEBRA

  • Fernandez, Juan C. Gutierrez;Garcia, Claudia I.
    • 호남수학학술지
    • /
    • 제38권2호
    • /
    • pp.269-277
    • /
    • 2016
  • In a paper of S. H. Choi [2], the author studied the derivations of a restricted Weyl Type non-associative algebra, and determined a 1-dimensional vector space of derivations. We describe all the derivations of this algebra and prove that they form a 3-dimensional Lie algebra.