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THE CLASSIFICATION OF ω-LEFT-SYMMETRIC

ALGEBRAS IN LOW DIMENSIONS

Zhiqi Chen and Yang Wu

Abstract. ω-left-symmetric algebras contain left-symmetric algebras as

a subclass and the commutator defines an ω-Lie algebra. In this paper, we
classify ω-left-symmetric algebras in dimension 3 up to an isomorphism

based on the classification of ω-Lie algebras and the technique of Lie
algebras.

1. Introduction

A vector space L over F is called an ω-Lie algebra if there is a bilinear map
[·, ·] : L× L→ L and a skew-symmetric bilinear form ω : L× L→ F such that

(1) [x, y] = −[y, x],
(2) [[x, y], z] + [[y, z], x] + [[z, x], y] = ω(x, y)z + ω(y, z)x+ ω(z, x)y,

hold for any x, y, z ∈ L, denote by Lω. The notation is given by Nurowski in
[17], and there are a lot of studies in this field such as [7–9, 20, 21]. Clearly
ω-Lie algebras include Lie algebras as a subclass.

It is well-known that left-symmetric algebras are defined by the representa-
tion of Lie algebras. A natural question is to define ω-left-symmetric algebras
by the representation of ω-Lie algebras, which is given in [19] as follows. Let
Vω be a vector space over F with a bilinear map (x, y) 7→ xy. If there is a
bilinear map ω : Vω × Vω → F such that

(xy)z − x(yz)− (yx)z + y(xz) = ω(x, y)z, ∀x, y, z ∈ Vω,

then Vω is called an ω-left-symmetric algebra. Left-symmetric algebras (or
pre-Lie algebras, quasi-associative algebras, Vinberg algebras and so on) are
ω-left-symmetric algebras with ω = 0, which are first introduced by A. Cayley
in 1896 ([5]). They appear in many fields in mathematics and mathematical
physics, for more details see [2–4, 6, 10–16, 18] and so on. Moreover Vω is an
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ω-Lie algebra under the commutator [x, y] = xy − yx, which is denoted by
(Vω, [·, ·]).

The classification of left-symmetric algebras in dimension 3 is given by Bai in
[1]. This paper is to classify ω-left-symmetric algebras with ω ̸= 0 in dimension
3 based on the classification of ω-Lie algebras given by Nurowski in [17].

The paper is organized as follows. In Section 3, we recall some notations
and results on ω-Lie algebras. In particular, we list the classification of ω-Lie
algebras in dimension 3 given by Nurowski. Here we point out that there are
two ω-Lie algebras in Nurowski’s list which are ω-isomorphic. In Section 4, we
obtain ω-left-symmetric algebras in dimension 3 based on the classification of
ω-Lie algebras given by Nurowski, i.e., Theorem 3.3. In Section 5, we compute
the automorphisms of ω-left-symmetric algebras given in Theorem 3.3, and
then give the classification up to an ω-isomorphism.

2. ω-Lie algebras

Definition 2.1 ([17]). Let L be a vector space over F. If there is a bilinear
map [·, ·] : L× L→ L and a skew-symmetric bilinear form ω : L× L→ F such
that

(1) [x, y] = −[y, x],
(2) [[x, y], z] + [[y, z], x] + [[z, x], y] = ω(x, y)z + ω(y, z)x+ ω(z, x)y,

hold for any x, y, z ∈ L, then L is called an ω-Lie algebra, denote by Lω. The
second identity is called the ω-Jacobi identity, and Lω is called simple if Lω

has no non-trivial ideal.

Clearly Lie algebras are ω-Lie algebras with ω = 0. Let Lω be an ω-Lie
algebra in dimension 2 with ω ̸= 0. Then there exists a basis {e1, e2} of Lω

such that

(1) [e1, e2] = 0, ω(e1, e2) = a for some a ̸= 0, or
(2) [e1, e2] = e2, ω(e1, e2) = a for some a ̸= 0.

Definition 2.2. Let Lω and LΩ be ω-Lie algebras over F. If there is a linear
isomorphism ρ : Lω → LΩ such that

ρ([x, y]) = [ρ(x), ρ(y)], ∀x, y ∈ Lω,

then ρ is called an isomorphism from Lω to LΩ. Furthermore, if ω(x, y) =
Ω(ρ(x), ρ(y)), then ρ is called an ω-isomorphism.

Denote by Isom(Lω, LΩ) and Isomω,Ω(Lω, LΩ) the sets of isomorphisms and
ω-isomorphisms from Lω to LΩ, respectively. Clearly

Isomω,Ω(Lω,LΩ) ⊆ Isom(Lω,LΩ).

Set Aut(Lω) = Isom(Lω, Lω) and Autω(Lω) = Isomω,ω(Lω, Lω).

Example 2.3. Let Lω be an ω-Lie algebra in dimension 2 with a basis {e1, e2}
satisfying

[e1, e2] = e1, ω(e1, e2) = 1.
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It is easy to see that Aut(Lω) = ( a b
0 1 ) for a ̸= 0. Furthermore, if f ∈ Autω(Lω),

then

a = ω(f(e1), f(e2)) = ω(e1, e2) = 1.

That is, Autω(Lω) = ( 1 b
0 1 ). For this case,

Autω(Lω) ⊂ Aut(Lω).

Proposition 2.4. Let Lω and LΩ be ω-Lie algebras with dimLω = dimLΩ ≥ 3.
Then

Isom(Lω, LΩ) = Isomω,Ω(Lω, LΩ).

Proof. It is enough to prove Isom(Lω, LΩ) ⊆ Isomω,Ω(Lω, LΩ). For any ρ ∈
Isom(Lω, LΩ),

ω(x, y)ρ(z) + ω(y, z)ρ(x) + ω(z, x)ρ(y)

= ρ(ω(x, y)z + ω(y, z)x+ ω(z, x)y)

= ρ([[x, y], z] + [[y, z], x] + [[z, x], y])

= [[ρ(x), ρ(y)], ρ(z)] + [[ρ(y), ρ(z)], ρ(x)] + [[ρ(z), ρ(x)], ρ(y)]

= Ω(ρ(x), ρ(y))ρ(z) + Ω(ρ(y), ρ(z))ρ(x) + Ω(ρ(z), ρ(x))ρ(y)

by the ω-Jacobi identity and the definition of an isomorphism. For any x, y ∈
Lω, there exists z ∈ Lω which does not belong to the subspace generated by x
and y. It means that ρ(z) does not belong to the subspace in LΩ generated by
ρ(x) and ρ(y). Hence the above identity shows that Ω(ρ(x), ρ(y)) = ω(x, y),
i.e., ρ ∈ Isomω,Ω(Lω, LΩ). □

Theorem 2.5 ([17]). Let Lω be an ω-Lie algebra of dimension 3 over R with
ω ̸= 0. Then Lω is one of the following types. That is, there exists a basis
{e1, e2, e3} of Lω such that

(1) [e1, e2] = e2, [e2, e3] = e1, [e3, e1] = −e3, ω(e1, e2) = 0, ω(e2, e3) = 2
and ω(e3, e1) = 0. It is type IVT .

(2) [e1, e2] = −e1, [e2, e3] = e1 + e3, [e3, e1] = −e2, ω(e1, e2) = 0, ω(e2, e3)
= 0 and ω(e3, e1) = −2. It is type V IS.

(3) [e1, e2] = e2, [e2, e3] = e1, [e3, e1] = −e2−e3, ω(e1, e2) = 0, ω(e2, e3) =
2 and ω(e3, e1) = 0. It is type V IT .

(4) [e1, e2] = e2 − e1, [e2, e3] = e1 + e3, [e3, e1] = −e2 − e3, ω(e1, e2) = 0,
ω(e2, e3) = 2 and ω(e3, e1) = −2. It is type V IN .

(5) [e1, e2] = e2, [e2, e3] = e1, [e3, e1] = e2−e3, ω(e1, e2) = 0, ω(e2, e3) = 2
and ω(e3, e1) = 0. It is type V IIT .

(6) [e1, e2] = −e3, [e2, e3] = e1 − ae2, [e3, e1] = e2 + ae1, ω(e1, e2) = −2a,
ω(e2, e3) = 0 and ω(e3, e1) = 0. It is type V IIIa.

(7) [e1, e2] = ae2 − e3, [e2, e3] = e1, [e3, e1] = e2 − ae3, ω(e1, e2) = 0,
ω(e2, e3) = 2a and ω(e3, e1) = 0. It is type V IIITa.

(8) [e1, e2] = ae2−e3, [e2, e3] = e1−ae2, [e3, e1] = ae1+e2−ae3, ω(e1, e2) =
−2a, ω(e2, e3) = 2a and ω(e3, e1) = 0. It is V IIINa.
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(9) [e1, e2] = e3, [e2, e3] = e1 − ae2, [e3, e1] = e2 + ae1, ω(e1, e2) = 2a,
ω(e2, e3) = 0 and ω(e3, e1) = 0. It is type IXa.

Here a > 0 is a real number.

Remark 2.6. In the above classification, two ω-Lie algebras of types VIS and
VIT are isomorphic, and there is no isomorphism for the other types of ω-Lie
algebras. Assume that Lω and LΩ are ω-Lie algebras of types V IS and V IT ,
respectively. Let {e1, e2, e3} be the basis of Lω satisfying

[e1, e2] = −e1, [e2, e3] = e1 + e3, [e3, e1] = −e2,
ω(e1, e2) = ω(e2, e3) = 0, ω(e3, e1) = −2

and let {E1, E2, E3} be the basis of LΩ satisfying

[E1, E2] = E2, [E2, E3] = E1, [E3, E1] = −E2 − E3,

Ω(E1, E2) = Ω(E3, E1) = 0, Ω(E2, E3) = 2.

Define a linear map f from Lω to LΩ by

f(e1) = E2, f(e2) = E1, f(e3) = E3.

It is easy to see that f ∈ Isom(Lω, LΩ) = Isomω,Ω(Lω, LΩ).

Definition 2.7 ([21]). Let Lω be an ω-Lie algebra and M a vector space. If
there is a linear map ψ : Lω → End(M) such that

ψ([x, y])m = ψ(x)ψ(y)m− ψ(y)ψ(x)m+ ω(x, y)m, ∀x, y ∈ Lω,m ∈M,

then (ψ,M) or ψ is called a representation of Lω.

3. ω-left-symmetric algebras

Definition 3.1 ([19]). Let Vω be a vector space over F with a bilinear map
(x, y) 7→ xy. If there is a bilinear map ω : Vω × Vω → F such that

(3.1) (xy)z − x(yz)− (yx)z + y(xz) = ω(x, y)z, ∀x, y, z ∈ Vω.

Then Vω is called an ω-left-symmetric algebra.

For an ω-left-symmetric algebra Vω, it is easy to check that

(1) ω is skew-symmetric, and clearly Vω is a left-symmetric algebra if ω = 0.
(2) Vω is an ω-Lie algebra under the commutator [x, y] = xy− yx. Denote

it by (Vω, [·, ·]).
(3) Define a linear map l : Vω → End(Vω) by l(x)(y) = lx(y) = xy. Then l

is a representation of the ω-Lie algebra (Vω, [·, ·]).
That is, an ω-left-symmetric algebra can be considered as an extension of a

left symmetric algebra, and the relationship between ω-left-symmetric algebra
and ω-Lie algebra is similar to that between Lie algebra and left-symmetric
algebra. The following is to classify ω-left-symmetric algebras in low dimensions
which are not left-symmetric algebras, i.e., ω ̸= 0.
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Theorem 3.2 ([19]). Let Vω be an ω-left-symmetric algebra in dimension 2
with ω ̸= 0. Then there is a basis {e1, e2} of Vω such that ω(e1, e2) = 1, and

(1) e1e1 = e1, e1e2 = e2, e2e1 = −e1 + e2, e2e2 = ae1 + be2, or
(2) e1e1 = e1 + ae2, e1e2 = e2, e2e1 = −e1 + e2, e2e2 = −2e2.

We will classify ω-left-symmetric algebras of dimension 3 over R based on
the classification of ω-Lie algebras given by Nurowski. Assume that Vω is an
ω-left-symmetric algebra of dimension 3 with the product (x, y) 7→ xy. Then
Vω is an ω-Lie algebra of dimension 3 under the commutator [x, y] = xy − yx.
Suppose that there is a basis in Vω such that

[e1, e2] = kiei, [e2, e3] = liei, [e3, e1] = piei.

ω(e1, e2) = c12, ω(e2, e3) = c23, ω(e3, e1) = c31.

Then the product of the ω-left-symmetric algebra is equivalent to that, for any
x ∈ Vω,

(e1e2)x− e1(e2x)− (e2e1)x+ e2(e1x) = c12x,

(e2e3)x− e2(e3x)− (e3e2)x+ e3(e2x) = c23x,

(e3e1)x− e3(e1x)− (e1e3)x+ e1(e3x) = c31x.

Let lx denote the left multiplication on Vω, i.e., lx(y) = xy, and denote by
A,B,C the matrices of le1 , le2 , le3 under the basis {e1, e2, e3}, respectively,
i.e.,

le1(e1, e2, e3) = (e1, e2, e3)A,

le2(e1, e2, e3) = (e1, e2, e3)B,

le3(e1, e2, e3) = (e1, e2, e3)C.

Then the above equations are equivalent to

(3.2)


kilei −AB +BA = c12,

lilei −BC + CB = c23,

pilei − CA+AC = c31.

3.1. (Vω, [·, ·]) is type IVT as an ω-Lie algebra

Then there is a basis {e1, e2, e3} such that

[e1, e2] = e2, [e2, e3] = e1, [e3, e1] = −e3,
ω(e1, e2) = 0, ω(e2, e3) = 2, ω(e3, e1) = 0.

It is easy to see that (Vω, [·, ·]) is simple as an ω-Lie algebra. Moreover, we have

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , B =

 a12 b12 b13
a22 − 1 b22 b23
a32 b32 b33

 , C =

 a13 b13 − 1 c13
a23 b23 c23

a33 − 1 b33 c33

.
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By (3.2), we have

AB −BA−B = 0, BC − CB −A+ 2I = 0, AC − CA− C = 0.

By the second one, we have A = [B,C] + 2I. Putting into the other two, we
have

B = [[B,C], B], C = [[B,C], C].

It means that {B,C, [B,C]} generates a Lie subalgebra of R3×3. Then

[[B,C], [B,C]] + [[C, [B,C]], B] + [[[B,C], B], C] = 0.

It follows that 2[B,C] = 0. Then B = C = [B,C] = 0, which is impossible.
That is, there is no ω-left-symmetric algebra Vω such that (Vω, [·, ·]) is type

IVT .

3.2. (Vω, [·, ·]) is type V IT as an ω-Lie algebra

Then there is a basis {e1, e2, e3} such that

[e1, e2] = e2, [e2, e3] = e1, [e3, e1] = −e2 − e3,

ω(e1, e2) = 0, ω(e2, e3) = 2, ω(e3, e1) = 0.

Clearly, (Vω, [·, ·]) is simple. Moreover, we have

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , B =

 a12 b12 b13
a22 − 1 b22 b23
a32 b32 b33

 , C =

 a13 b13 − 1 c13
a23 − 1 b23 c23
a33 − 1 b33 c33

.
By (3.2), we have

AB −BA−B = 0, BC − CB −A+ 2I = 0, AC − CA− C −B = 0.

By the second one, we have A = [B,C] + 2I. Putting into the other two, we
have

B = [[B,C], B], B + C = [[B,C], C].

That is, {B,C, [B,C]} generates a Lie subalgebra of R3×3. Then

[[B,C], [B,C]] + [[C, [B,C]], B] + [[[B,C], B], C] = 0.

It follows that [B,C] = 0. Then B = C = [B,C] = 0, which is impossible.
That is, there is no ω-left-symmetric algebra Vω such that (Vω, [·, ·]) is type

V IT .

3.3. (Vω, [·, ·]) is type V IN as an ω-Lie algebra

Then there is a basis {e1, e2, e3} such that

[e1, e2] = e2 − e1, [e2, e3] = e1 + e3, [e3, e1] = −e3 − e2,

ω(e1, e2) = 0, ω(e2, e3) = 2, ω(e3, e1) = −2.

Clearly, (Vω, [·, ·]) is not simple. Moreover, we have

A =

a11 a12 c11
a21 a22 c21 + 1
a31 a32 c31 + 1

 , B =

a12 + 1 b12 c12 + 1
a22 − 1 b22 c22
a32 b32 c32 + 1

 , C =

c11 c12 c13
c21 c22 c23
c31 c32 c33

.
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By (3.2), we have

B−A−AB+BA = 0, A+C −BC +CB = 2I, −B−C −CA+AC = −2I.

That is,

B −A = [A,B], A+ C = 2I + [B,C], B + C = 2I + [A,C].

Consider the dimension k of the Lie algebra L generated by {A,B,C, I}.
First we know k ̸= 1.
If k = 4, then {A,B,C, I} is a basis of L. Moreover, under this basis, we

have

adA =


0 −1 0 0
0 1 1 0
0 0 1 0
0 0 −2 0

 , adB =


1 0 1 0
−1 0 0 0
0 0 1 0
0 0 −2 0

 .

It follows that

adB−A =


1 1 1 0
−1 −1 −1 0
0 0 0 0
0 0 0 0

 , ad[A,B] =


1 1 −1 0
−1 −1 1 0
0 0 0 0
0 0 0 0

 .

It contradicts to B −A = [A,B].
If k = 3, we divide into four cases:
(1) {A,B,C} is a basis of L. Let 2I = xA+ yB + zC. Then

B −A = [A,B], (1− x)A− yB + (1− z)C = [B,C],

− xA+ (1− y)B + (1− z)C = [A,C].

It means that

adA =

0 −1 −x
0 1 1− y
0 0 1− z

 , adB =

 1 0 1− x
−1 0 y
0 0 1− z

 , adC =

 x x− 1 0
y − 1 y 0
z − 1 z − 1 0

.
Since 2I ∈ L and ad2I = 0, we have xadA + yadB + zadC = 0, i.e.,

0 =

 y + xz z(x− 1)− x −y(x− 1)− x2

z(y − 1)− y x+ yz −x(y − 1)− y2

z(z − 1) z(z − 1) −(x+ y)(z − 1)

 .

By z(z− 1) = 0, we have z = 0 or z = 1. If z = 1, then z(y− 1)− y = −1 ̸= 0,
which is a contradiction. Thus z = 0. Thus x = y = 0. It follows that
2I = xA+ yB + cZ = 0, which is also a contradiction.

(2) {A,B, I} is a basis of L. Let C = xA+ yB + zI. Then we have

B −A = [A,B], (1 + x)A+ yB + (z − 2)I = −x[A,B],

xA+ (1 + y)B + (z − 2)I = y[A,B].

Putting the first one into the second one, we have A+(x+ y)B+(z− 2)I = 0,
which is impossible.
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(3) {A,C, I} is a basis of L. Let B = xA+ yC + zI. Then we have

(x− 1)A+ yC + zI = y[A,C], A+ C − 2I = x[A,C],

xA+ (1 + y)C + (z − 2)I = [A,C].

Putting the third one into the first and second one, we have y = z = 0 and
x = 1. That is, A = B and A+ C = 2I, which is impossible.

(4) {B,C, I} is a basis of L. Let A = xB + yC + zI. Then we have

(1− x)B − yC − zI = −y[B,C],
xB + (1 + y)C + (z − 2)I = [B,C], B + C − 2I = x[B,C].

Putting the second one into the first and third one, we have y = z = 0 and
x = 1. That is, A = B and B + C = 2I, which is impossible.

If k = 2, we will discuss the following three cases:
(1) If {A, I}, or {B, I}, or {C, I} is a basis of L, then [A,B] = [A,C] =

[B,C] = 0. Then A = B and A+ C = 2I. That is,

A =

a1 a1 − 1 2− a1
a2 a2 + 1 1− a2
a3 a3 1− a3

 , B =

a1 a1 − 1 2− a1
a2 a2 + 1 1− a2
a3 a3 1− a3

 , C =

2− a1 1− a1 a1 − 2
−a2 1− a2 −1 + a2
−a3 −a3 1 + a3

.
(2) If {A,B} is a basis of L, then we have that A − B = [B − A,C] =

[[A,B], C] = 0, i.e., A = B, which is impossible.
(3) If {A,C} or {B,C} is a basis of L, we have the same solution as (1).
That is, if Vω is an ω-left-symmetric algebra such that (Vω, [·, ·]) is type V IN ,

then there exists a basis {e1, e2, e3} of Vω such that
e1e1 = e2e1 = a1e1 + a2e2 + a3e3 = 2e1 − e3e1,

e1e2 = e2e2 = (a1 − 1)e1 + (a2 + 1)e2 + a3e3 = 2e2 − e3e2,

e1e3 = e2e3 = (2− a1)e1 + (1− a2)e2 + (1− a3)e3 = 2e3 − e3e3,

ω(e1, e2) = 0, ω(e2, e3) = 2, ω(e3, e1) = −2.

3.4. (Vω, [·, ·]) is type V IIT as an ω-Lie algebra

Then there is a basis {e1, e2, e3} such that

[e1, e2] = e2, [e2, e3] = e1, [e3, e1] = e2 − e3,

ω(e1, e2) = 0, ω(e2, e3) = 2, ω(e3, e1) = 0.

Clearly, (Vω, [·, ·]) is simple. Moreover we have

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , B =

 a12 b12 b13
a22 − 1 b22 b23
a32 b32 b33

 , C =

 a13 b13 − 1 c13
a23 + 1 b23 c23
a33 − 1 b33 c33

.
By (3.2), we have

B −AB +BA = 0, A−BC + CB = 2I, B − C +AC − CA = 0.

It means that
B = [[B,C], B], −B + C = [[B,C], C].
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That is, {B,C, [B,C]} generates a Lie subalgebra of R3×3. Then

[[B,C], [B,C]] + [[C, [B,C]], B] + [[[B,C], B], C] = 0.

It gives 2[B,C] = 0, furthermore B = C = [B,C] = 0, which is impossible.
That is, there is no ω-left-symmetric algebra Vω such that (Vω, [·, ·]) is type

V IIT .

3.5. (Vω, [·, ·]) is type V IIIa as an ω-Lie algebra

Then there is a basis {e1, e2, e3} such that

[e1, e2] = −e3, [e2, e3] = e1 − ae2, [e3, e1] = ae1 + e2,

ω(e1, e2) = −2a, ω(e2, e3) = 0, ω(e3, e1) = 0, a > 0.

Clearly, (Vω, [·, ·]) is simple. Moreover we have

A =

a11 a12 c11 − a
a21 a22 c21 − 1
a31 a32 c31

 , B =

 a12 b12 c12 + 1
a22 b22 c22 − a

a32 + 1 b32 c32

 , C =

c11 c12 c13
c21 c22 c23
c31 c32 c33

.
By (3.2), we have

− C −AB +BA = −2aI, A− aB −BC + CB = 0,

aA+B +AC − CA = 0.

Then we have

−A+ aB = [[B,A], B], aA+B = [[B,A], A].

That is, {B,A, [B,A]} generates a Lie subalgebra of R3×3. Then we know

[[B,A], [B,A]] + [[A, [B,A]], B] + [[[B,A], B], A] = 0.

It follows that 2a[B,A] = 0, so B = A = [B,A] = 0, which is impossible.
That is, there is no ω-left-symmetric algebra Vω such that (Vω, [·, ·]) is type

V IIIa.

3.6. (Vω, [·, ·]) is type V IIITa as an ω-Lie algebra

Then there is a basis {e1, e2, e3} such that

[e1, e2] = ae2 − e3, [e2, e3] = e1, [e3, e1] = e2 − ae3,

ω(e1, e2) = 0, ω(e2, e3) = 2a, ω(e3, e1) = 0, a > 0.

Clearly, (Vω, [·, ·]) is simple for a ̸= 1. Moreover we have

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , B =

 a12 b12 b13
a22 − a b22 b23
a32 + 1 b32 b33

 , C =

 a13 b13 − 1 c13
a23 + 1 b23 c23
a33 − a b33 c33

.
By (3.2), we have

aB − C −AB +BA = 0, A−BC + CB = 2aI, B − aC +AC − CA = 0.
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It means that

aB − C = [[B,C], B], −B + aC = [[B,C], C].

That is, {B,C, [B,C]} generates a Lie subalgebra of R3×3. Then we know

[[B,C], [B,C]] + [[C, [B,C]], B] + [[[B,C], B], C] = 0.

It gives 2[B,C] = 0, then B = C. Since it is impossible for B = C = 0, we
have A = 2I and a = 1. Then we have

A =

2 0 0
0 2 0
0 0 2

 , B = C =

0 a1 a1 + 1
1 a2 a2
1 a3 a3

 .

That is, if Vω is an ω-left-symmetric algebra such that (Vω, [·, ·]) is type V IIITa,
then a = 1 and there exists a basis {e1, e2, e3} of Vω such that

e1e1 = 2e1, e1e2 = 2e2, e1e3 = 2e3,

e2e1 = e3e1 = e2 + e3,

e2e2 = e3e2 = a1e1 + a2e2 + a3e3,

e2e3 = e3e3 = (a1 + 1)e1 + a2e2 + a3e3,

ω(e1, e2) = 0, ω(e2, e3) = 2, ω(e3, e1) = 0.

3.7. (Vω, [·, ·]) is type V IIINa as an ω-Lie algebra

Then there is a basis {e1, e2, e3} such that

[e1, e2] = ae2 − e3, [e2, e3] = e1 − ae2, [e3, e1] = ae1 + e2 − ae3,

ω(e1, e2) = −2a, ω(e2, e3) = 2a, ω(e3, e1) = 0, a > 0.

Clearly (Vω, [·, ·]) is simple. Moreover we have

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , B =

 a12 b12 b13
a22 − a b22 b23
a32 + 1 b32 b33

 , C =

a13 + a b13 − 1 c13
a23 + 1 b23 + a c23
a33 − a b33 c33

.
By (3.2), we have

aB − C −AB +BA = −2aI, A− aB −BC + CB = 2aI,

aA+B − aC +AC − CA = 0.

That is,

aB − C + 2aI = [A,B], A− aB − 2aI = [B,C], −aA−B + aC = [A,C].

Let L be the Lie subalgebra of R3×3 generated by {A,B,C, I} with the dimen-
sion k.

Case 1: k = 4. Then we have

adA =


0 0 −a 0
0 a −1 0
0 −1 a 0
0 2a 0 0

 , adB =


0 0 1 0
−a 0 −a 0
1 0 0 0

−2a 0 −2a 0

 , adC =


a −1 0 0
1 a 0 0
−a 0 0 0
0 2a 0 0

.
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By ad[A,B] = adaB−C+2aI , we have a = 0, which is impossible.
Case 2: k = 3. We will discuss the following cases:
(1) If {A,B,C} is a basis of L, let 2aI = xA+ yB + zC, then we have

xA+ (y + a)B + (z − 1)C = [A,B],

(1− x)A− (y + a)B − zC = [B,C], −aA−B + aC = [A,C].

Under this basis, we have

adA =

0 x −a
0 y + a −1
0 z − 1 a

 , adB =

 −x 0 1− x
−y − a 0 −y − a
1− z 0 −z

 , adC =

 a x− 1 0
1 y + a 0
−a z 0

.
Then by ad−aA−B+aC = ad[A,C], we have a2 + x −a a2 + x− 1

2a+ y 0 2a+ y
−a2 + z − 1 a −a2 + z

 =

 a2 + x a+ y − ax− az a2 + x− 1
2a+ y −x− z 2a+ y

−a2 + z − 1 ax− y − a+ az −a2 + z

.
It follows that x = −z and y = −2a. Then 2aI = x(A − C) − 2aB, so
adx(A−C)−2aB = 0. That is, ax x ax− 2a

−x− 2a2 0 −x− 2a2

−2a− ax −x −ax

 = 0,

it follows that x = 0 and a = 0, which is impossible.
(2) If {A,B, 2aI} is a basis of L, assume that {A,B,C} is linear dependent

by (1), then C = xA+ yB. It follows that

− xA+ (−y + a)B + 2aI = [A,B], A− aB − 2aI = −x[A,B],

(ax− a)A− (ay − 1)B = y[A,B].

It gives y = 0, which is impossible. Similarly, we can show that {A,C, 2aI}
and {C,B, 2aI} are not the basis of L.

Case 3: k = 2. We discuss the following cases.
(1) {A, 2aI}, or {B, 2aI}, or {C, 2aI} is basis of L. For any case, then we

have
aB − C + 2aI = 0, A− aB − 2aI = 0, −aA−B + aC = 0.

It gives A = C and B = 0, which is impossible.
(2) {A,B}, or {A,C}, {C,B} is a basis of L. For the first case, let C =

xA+ yB and 2aI = pA+ qB. Then we have{
1− p = x(x− p), (i)

a+ q = x(q + a− y), (ii)
and

{
a(x− 1) = y(p− x), (iii)

ay − 1 = y(q + a− y). (iv)

By (i), we have p = x+1 or x = 1. If x = 1, then y = 0 by (ii), but (iv) doesn’t
hold. So p = x+ 1, then y = a(x− 1) by (iii). Then

ay − 1 = y(q + a− y) = a(x− 1)(q + a− y) = a(a+ q)− a(q + a− y) = ay,

which is impossible.



758 Z. CHEN AND Y. WU

Clearly k ̸= 1. That is, there is no ω-left-symmetric algebra Vω such that
(Vω, [·, ·]) is type V IIINa.

3.8. (Vω, [·, ·]) is type IXa as an ω-Lie algebra

Then there is a basis {e1, e2, e3} such that

[e1, e2] = e3, [e2, e3] = e1 − ae2, [e3, e1] = ae1 + e2,

ω(e1, e2) = 2a, ω(e2, e3) = 0, ω(e3, e1) = 0, a > 0.

Clearly (Vω, [·, ·]) is simple. Moreover we have

A =

a11 b11 c11 − a
a21 b21 c21 − 1
a31 b31 + 1 c31

 , B =

b11 b12 c12 + 1
b21 b22 c22 − a
b31 b32 c32

 , C =

c11 c12 c13
c21 c22 c23
c31 c32 c33

.
By (3.2), we have

C − 2aI −AB +BA = 0, A− aB −BC + CB = 0,

aA+B +AC − CA = 0.

It means that

A− aB = [B, [A,B]], −aA−B = [A, [A,B]].

That is, {B,A, [A,B]} generates a Lie subalgebra of R3×3. Then we know

[[A,B], [A,B]] + [[B, [A,B]], A] + [[[A,B], A], B] = 0.

It gives 2a[A,B] = 0, then [A,B] = 0, C = 2aI and a2 + 1 = 0, which is
impossible.

That is, there is no ω-left-symmetric algebra Vω such that (Vω, [·, ·]) is type
IXa.

In summary, we have the structure theorem of ω-left-symmetric algebras in
dimension 3.

Theorem 3.3. Let Vω be an ω-left-symmetric algebra over R in dimension 3.
Then one of the following cases holds:

(1) Vω is a left-symmetric algebra.
(2) (Vω, [·, ·]) is type V IN , and there exists a basis {e1, e2, e3} of Vω such

that
e1e1 = e2e1 = a1e1 + a2e2 + a3e3 = 2e1 − e3e1,

e1e2 = e2e2 = (a1 − 1)e1 + (a2 + 1)e2 + a3e3 = 2e2 − e3e2,

e1e3 = e2e3 = (2− a1)e1 + (1− a2)e2 + (1− a3)e3 = 2e3 − e3e3,

ω(e1, e2) = 0, ω(e2, e3) = 2, ω(e3, e1) = −2.
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(3) (Vω, [·, ·]) is type V IIITa with a = 1, and there exists a basis {e1, e2, e3}
of Vω such that

e1e1 = 2e1, e1e2 = 2e2, e1e3 = 2e3,

e2e1 = e3e1 = e2 + e3,

e2e2 = e3e2 = a1e1 + a2e2 + a3e3,

e2e3 = e3e3 = (a1 + 1)e1 + a2e2 + a3e3,

ω(e1, e2) = 0, ω(e2, e3) = 2, ω(e3, e1) = 0.

4. The isomorphism of ω-left-symmetric algebras

Definition 4.1. Let Vω and VΩ be ω-left-symmetric algebras over F. If there
is a linear isomorphism ρ : Vω → VΩ such that

ρ(xy) = ρ(x)ρ(y), ∀x, y ∈ Vω,

then ρ is called an isomorphism from Vω to VΩ. Furthermore, if ω(x, y) =
Ω(ρ(x), ρ(y)), then ρ is called an ω-isomorphism.

Denote by Isom(Vω, VΩ) and Isomω,Ω(Vω, VΩ) the sets of isomorphisms and
ω-isomorphisms from Vω to VΩ, respectively. Clearly

Isomω,Ω(Vω, VΩ) ⊆ Isom(Vω, VΩ).

Proposition 4.2. Let Vω and VΩ be ω-left-symmetric algebras with dimVω =
dimVΩ ≥ 1. Then

Isom(Vω, VΩ) = Isomω,Ω(Vω, VΩ).

Proof. It is enough to prove Isom(Vω, VΩ) ⊆ Isomω,Ω(Vω, VΩ). For any ρ ∈
Isom(Vω, VΩ),

ω(x, y)ρ(z) = ρ((xy)z − x(yz)− (yx)z + y(xz))

= (ρ(x)ρ(y))ρ(z)−ρ(x)(ρ(y)ρ(z))−(ρ(y)ρ(x))ρ(z)+ρ(y)(ρ(x)ρ(z))

= Ω(ρ(x), ρ(y))ρ(z)

by the definitions of ω-left-symmetric algebras and isomorphisms. For any
x, y ∈ Vω, there exists 0 ̸= z ∈ Vω, then ρ(z) ̸= 0. Hence we have Ω(ρ(x), ρ(y))
= ω(x, y), i.e., ρ ∈ Isomω,Ω(Vω, VΩ). □

In the following, we will compute Isom(Vω, Vω) for Vω in cases (2) and (3)
of Theorem 3.3, and then discuss the classification up to an isomorphism (i.e.,
ω-isomorphism by Proposition 4.2). We first give a simple fact.

Lemma 4.3. Let Vω be an ω-left-symmetric algebra and ρ ∈ Isom(Vω, Vω). If
x ∈ Vω such that lx = kI, then lρ(x) = kI.

Proof. Since ρ ∈ Isom(Vω, Vω), we have ρ(x)ρ(y) = ρ(xy) = kρ(y) for any
y ∈ Vω. Thus lρ(x) = kI. □
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Case (2) in Theorem 3.3. Then {f1 = e1, f2 = e2 − e1, f3 = e3 + e2} is a
basis of Vω such that

f1f1 = b1f1 + b2f2 + b3f3,

f1f2 = −f2, f1f3 = 2f1 + f2 + f3,

f2f1 = f2f2 = f2f3 = 0,

f3f1 = 2f1, f3f2 = 2f2, f3f3 = 2f3.

Here b1, b2, b3 are arbitrary real numbers. Assume that ρ ∈ Isom(Vω, Vω). By
Lemma 4.3 and the algebraic structure, we must have

ρ(f2) = bf2, ρ(f3) = −af2 + f3, b ̸= 0.

Furthermore, by ρ(f1f2) = ρ(f1)ρ(f2) and ρ(f1f3) = ρ(f1)ρ(f3), we have

ρ(f1) = f1 + (a+
1− b

2
)f2.

Moreover, ρ(f1f1) = ρ(f1)ρ(f1) if and only if for the coefficient of f2,

(b1 − b3 + 1)a =
(2b2 − b1 − 1)(1− b)

2
.

Set f ′i = ρ(fi). Then we have the following cases:

(1) If 2b2 − b3 ̸= 0, set a = b2(2b2−b1−1)
2b2−b3

and 1−b
2 = b2(b1−b3+1)

2b2−b3
, we have{

f ′1f
′
1 = b1f

′
1 + b3f

′
3, f

′
1f

′
2 = −f ′2, f ′1f ′3 = 2f ′1 + f ′2 + f ′3,

f ′2f
′
1 = f ′2f

′
2 = f ′2f

′
3 = 0, f ′3f

′
1 = 2f ′1, f

′
3f

′
2 = 2f ′2, f

′
3f

′
3 = 2f ′3.

For this case, ω-left-symmetric algebras with different (b1, b3) are not
isomorphic.

(2) If 2b2 − b3 = 0 and 2b2 = b1 + 1, then a and b ̸= 0 are arbitrary.
Furthermore taking a and b such b2 = a+ 1−b

2 , we have{
f ′1f

′
1 = (2b2 − 1)f ′1 + 2b2f

′
3, f

′
1f

′
2 = −f ′2, f ′1f ′3 = 2f ′1 + f ′2 + f ′3,

f ′2f
′
1 = f ′2f

′
2 = f ′2f

′
3 = 0, f ′3f

′
1 = 2f ′1, f

′
3f

′
2 = 2f ′2, f

′
3f

′
3 = 2f ′3.

It is a special case of (1).
(3) If 2b2 − b3 = 0 and 2b2 ̸= b1 + 1, then a + 1−b

2 = 0. Furthermore we
have{
f ′1f

′
1 = b1f

′
1 + b2f

′
2 + 2b2f

′
3, f

′
1f

′
2 = −f ′2, f ′1f ′3 = 2f ′1 + f ′2 + f ′3,

f ′2f
′
1 = f ′2f

′
2 = f ′2f

′
3 = 0, f ′3f

′
1 = 2f ′1, f

′
3f

′
2 = 2f ′2, f

′
3f

′
3 = 2f ′3.

For this case, ω-left-symmetric algebras with different (b1, b2) are not
isomorphic.
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Case (3) in Theorem 3.3. Then {f1 = e1, f2 = e2 − e3, f3 = e3} is a basis
of Vω such that 

f1f1 = 2f1, f1f2 = 2f2, f1f3 = 2f3,

f2f1 = f2f2 = f2f3 = 0,

f3f1 = f2 + 2f3, f3f2 = −f1,
f3f3 = b1f1 + b2f2 + b3f3.

Here b1 = a1+1, b2 = a2 and b3 = a3 are arbitrary real numbers. Assume that
ρ ∈ Isom(Vω, Vω). By Lemma 4.3 and the algebraic structure, we must have

ρ(f1) = f1 + af2, ρ(f2) = bf2, b ̸= 0.

Furthermore, by ρ(f3f1) = ρ(f3)ρ(f1) and ρ(f3f2) = ρ(f3)ρ(f2), we have

a = 0, ρ(f3) = (
b

2
− 1

2b
)f2 +

1

b
f3.

Moreover, ρ(f3f3) = ρ(f3)ρ(f3) means

b1f1 + b2bf2 + b3((
b

2
− 1

2b
)f2 +

1

b
f3) = −(

1

2
− 1

2b2
)f1 +

1

b2
(b1f1 + b2f2 + b3f3).

Then we have the following cases:

(1) If b3 ̸= 0, then b = 1. Thus ρ = I.
(2) If b3 = 0 and b2 ̸= 0, then b = 1. Thus ρ = I.
(3) If b2 = b3 = 0, b1 ̸= − 1

2 , then b = ±1.

(4) If b2 = b3 = 0, b1 = − 1
2 , then b ̸= 0.

It follows that ω-left-symmetric algebras with different (b1, b2, b3) are not iso-
morphic.
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