THE CLASSIFICATION OF ω-LEFT-SYMMETRIC ALGEBRAS IN LOW DIMENSIONS

Zhiqi Chen and Yang Wu

Abstract

. ω-left-symmetric algebras contain left-symmetric algebras as a subclass and the commutator defines an ω-Lie algebra. In this paper, we classify ω-left-symmetric algebras in dimension 3 up to an isomorphism based on the classification of ω-Lie algebras and the technique of Lie algebras.

1. Introduction

A vector space L over \mathbb{F} is called an ω-Lie algebra if there is a bilinear map $[\cdot, \cdot]: L \times L \rightarrow L$ and a skew-symmetric bilinear form $\omega: L \times L \rightarrow \mathbb{F}$ such that
(1) $[x, y]=-[y, x]$,
(2) $[[x, y], z]+[[y, z], x]+[[z, x], y]=\omega(x, y) z+\omega(y, z) x+\omega(z, x) y$,
hold for any $x, y, z \in L$, denote by L_{ω}. The notation is given by Nurowski in [17], and there are a lot of studies in this field such as [7-9, 20, 21]. Clearly ω-Lie algebras include Lie algebras as a subclass.

It is well-known that left-symmetric algebras are defined by the representation of Lie algebras. A natural question is to define ω-left-symmetric algebras by the representation of ω-Lie algebras, which is given in [19] as follows. Let V_{ω} be a vector space over \mathbb{F} with a bilinear map $(x, y) \mapsto x y$. If there is a bilinear map $\omega: V_{\omega} \times V_{\omega} \rightarrow \mathbb{F}$ such that

$$
(x y) z-x(y z)-(y x) z+y(x z)=\omega(x, y) z, \forall x, y, z \in V_{\omega},
$$

then V_{ω} is called an ω-left-symmetric algebra. Left-symmetric algebras (or pre-Lie algebras, quasi-associative algebras, Vinberg algebras and so on) are ω-left-symmetric algebras with $\omega=0$, which are first introduced by A. Cayley in 1896 ([5]). They appear in many fields in mathematics and mathematical physics, for more details see $[2-4,6,10-16,18]$ and so on. Moreover V_{ω} is an

[^0]ω-Lie algebra under the commutator $[x, y]=x y-y x$, which is denoted by $\left(V_{\omega},[\cdot, \cdot]\right)$.

The classification of left-symmetric algebras in dimension 3 is given by Bai in [1]. This paper is to classify ω-left-symmetric algebras with $\omega \neq 0$ in dimension 3 based on the classification of ω-Lie algebras given by Nurowski in [17].

The paper is organized as follows. In Section 3, we recall some notations and results on ω-Lie algebras. In particular, we list the classification of ω-Lie algebras in dimension 3 given by Nurowski. Here we point out that there are two ω-Lie algebras in Nurowski's list which are ω-isomorphic. In Section 4, we obtain ω-left-symmetric algebras in dimension 3 based on the classification of ω-Lie algebras given by Nurowski, i.e., Theorem 3.3. In Section 5, we compute the automorphisms of ω-left-symmetric algebras given in Theorem 3.3, and then give the classification up to an ω-isomorphism.

2. ω-Lie algebras

Definition 2.1 ([17]). Let L be a vector space over \mathbb{F}. If there is a bilinear map $[\cdot, \cdot]: L \times L \rightarrow L$ and a skew-symmetric bilinear form $\omega: L \times L \rightarrow \mathbb{F}$ such that
(1) $[x, y]=-[y, x]$,
(2) $[[x, y], z]+[[y, z], x]+[[z, x], y]=\omega(x, y) z+\omega(y, z) x+\omega(z, x) y$,
hold for any $x, y, z \in L$, then L is called an ω-Lie algebra, denote by L_{ω}. The second identity is called the ω-Jacobi identity, and L_{ω} is called simple if L_{ω} has no non-trivial ideal.

Clearly Lie algebras are ω-Lie algebras with $\omega=0$. Let L_{ω} be an ω-Lie algebra in dimension 2 with $\omega \neq 0$. Then there exists a basis $\left\{e_{1}, e_{2}\right\}$ of L_{ω} such that
(1) $\left[e_{1}, e_{2}\right]=0, \omega\left(e_{1}, e_{2}\right)=a$ for some $a \neq 0$, or
(2) $\left[e_{1}, e_{2}\right]=e_{2}, \omega\left(e_{1}, e_{2}\right)=a$ for some $a \neq 0$.

Definition 2.2. Let L_{ω} and L_{Ω} be ω-Lie algebras over \mathbb{F}. If there is a linear isomorphism $\rho: L_{\omega} \rightarrow L_{\Omega}$ such that

$$
\rho([x, y])=[\rho(x), \rho(y)], \forall x, y \in L_{\omega}
$$

then ρ is called an isomorphism from L_{ω} to L_{Ω}. Furthermore, if $\omega(x, y)=$ $\Omega(\rho(x), \rho(y))$, then ρ is called an ω-isomorphism.

Denote by $\operatorname{Isom}\left(L_{\omega}, L_{\Omega}\right)$ and $\operatorname{Isom}_{\omega, \Omega}\left(L_{\omega}, L_{\Omega}\right)$ the sets of isomorphisms and ω-isomorphisms from L_{ω} to L_{Ω}, respectively. Clearly

$$
\operatorname{Isom}_{\omega, \Omega}\left(\mathrm{L}_{\omega}, \mathrm{L}_{\Omega}\right) \subseteq \operatorname{Isom}\left(\mathrm{L}_{\omega}, \mathrm{L}_{\Omega}\right)
$$

Set $\operatorname{Aut}\left(L_{\omega}\right)=\operatorname{Isom}\left(L_{\omega}, L_{\omega}\right)$ and $\operatorname{Aut}_{\omega}\left(L_{\omega}\right)=\operatorname{Isom}_{\omega, \omega}\left(L_{\omega}, L_{\omega}\right)$.
Example 2.3. Let L_{ω} be an ω-Lie algebra in dimension 2 with a basis $\left\{e_{1}, e_{2}\right\}$ satisfying

$$
\left[e_{1}, e_{2}\right]=e_{1}, \omega\left(e_{1}, e_{2}\right)=1
$$

It is easy to see that $\operatorname{Aut}\left(L_{\omega}\right)=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ for $a \neq 0$. Furthermore, if $f \in \operatorname{Aut}_{\omega}\left(L_{\omega}\right)$, then

$$
a=\omega\left(f\left(e_{1}\right), f\left(e_{2}\right)\right)=\omega\left(e_{1}, e_{2}\right)=1
$$

That is, $\operatorname{Aut}_{\omega}\left(L_{\omega}\right)=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$. For this case,

$$
\operatorname{Aut}_{\omega}\left(L_{\omega}\right) \subset \operatorname{Aut}\left(L_{\omega}\right)
$$

Proposition 2.4. Let L_{ω} and L_{Ω} be ω-Lie algebras with $\operatorname{dim} L_{\omega}=\operatorname{dim} L_{\Omega} \geq 3$. Then

$$
\operatorname{Isom}\left(L_{\omega}, L_{\Omega}\right)=\operatorname{Isom}_{\omega, \Omega}\left(L_{\omega}, L_{\Omega}\right)
$$

Proof. It is enough to prove $\operatorname{Isom}\left(L_{\omega}, L_{\Omega}\right) \subseteq \operatorname{Isom}_{\omega, \Omega}\left(L_{\omega}, L_{\Omega}\right)$. For any $\rho \in$ $\operatorname{Isom}\left(L_{\omega}, L_{\Omega}\right)$,

$$
\begin{aligned}
& \omega(x, y) \rho(z)+\omega(y, z) \rho(x)+\omega(z, x) \rho(y) \\
= & \rho(\omega(x, y) z+\omega(y, z) x+\omega(z, x) y) \\
= & \rho([[x, y], z]+[[y, z], x]+[[z, x], y]) \\
= & {[[\rho(x), \rho(y)], \rho(z)]+[[\rho(y), \rho(z)], \rho(x)]+[[\rho(z), \rho(x)], \rho(y)] } \\
= & \Omega(\rho(x), \rho(y)) \rho(z)+\Omega(\rho(y), \rho(z)) \rho(x)+\Omega(\rho(z), \rho(x)) \rho(y)
\end{aligned}
$$

by the ω-Jacobi identity and the definition of an isomorphism. For any $x, y \in$ L_{ω}, there exists $z \in L_{\omega}$ which does not belong to the subspace generated by x and y. It means that $\rho(z)$ does not belong to the subspace in L_{Ω} generated by $\rho(x)$ and $\rho(y)$. Hence the above identity shows that $\Omega(\rho(x), \rho(y))=\omega(x, y)$, i.e., $\rho \in \operatorname{Isom}_{\omega, \Omega}\left(L_{\omega}, L_{\Omega}\right)$.

Theorem 2.5 ([17]). Let L_{ω} be an ω-Lie algebra of dimension 3 over \mathbb{R} with $\omega \neq 0$. Then L_{ω} is one of the following types. That is, there exists a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of L_{ω} such that
(1) $\left[e_{1}, e_{2}\right]=e_{2},\left[e_{2}, e_{3}\right]=e_{1},\left[e_{3}, e_{1}\right]=-e_{3}, \omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=2$ and $\omega\left(e_{3}, e_{1}\right)=0$. It is type $I V_{T}$.
(2) $\left[e_{1}, e_{2}\right]=-e_{1},\left[e_{2}, e_{3}\right]=e_{1}+e_{3},\left[e_{3}, e_{1}\right]=-e_{2}, \omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)$ $=0$ and $\omega\left(e_{3}, e_{1}\right)=-2$. It is type $V I_{S}$.
(3) $\left[e_{1}, e_{2}\right]=e_{2},\left[e_{2}, e_{3}\right]=e_{1},\left[e_{3}, e_{1}\right]=-e_{2}-e_{3}, \omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=$ 2 and $\omega\left(e_{3}, e_{1}\right)=0$. It is type $V I_{T}$.
(4) $\left[e_{1}, e_{2}\right]=e_{2}-e_{1},\left[e_{2}, e_{3}\right]=e_{1}+e_{3},\left[e_{3}, e_{1}\right]=-e_{2}-e_{3}, \omega\left(e_{1}, e_{2}\right)=0$, $\omega\left(e_{2}, e_{3}\right)=2$ and $\omega\left(e_{3}, e_{1}\right)=-2$. It is type $V I_{N}$.
(5) $\left[e_{1}, e_{2}\right]=e_{2},\left[e_{2}, e_{3}\right]=e_{1},\left[e_{3}, e_{1}\right]=e_{2}-e_{3}, \omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=2$ and $\omega\left(e_{3}, e_{1}\right)=0$. It is type $V I I_{T}$.
(6) $\left[e_{1}, e_{2}\right]=-e_{3},\left[e_{2}, e_{3}\right]=e_{1}-a e_{2},\left[e_{3}, e_{1}\right]=e_{2}+a e_{1}, \omega\left(e_{1}, e_{2}\right)=-2 a$, $\omega\left(e_{2}, e_{3}\right)=0$ and $\omega\left(e_{3}, e_{1}\right)=0$. It is type VIII .
(7) $\left[e_{1}, e_{2}\right]=a e_{2}-e_{3},\left[e_{2}, e_{3}\right]=e_{1},\left[e_{3}, e_{1}\right]=e_{2}-a e_{3}, \omega\left(e_{1}, e_{2}\right)=0$, $\omega\left(e_{2}, e_{3}\right)=2 a$ and $\omega\left(e_{3}, e_{1}\right)=0$. It is type VIII $I_{T a}$.
(8) $\left[e_{1}, e_{2}\right]=a e_{2}-e_{3},\left[e_{2}, e_{3}\right]=e_{1}-a e_{2},\left[e_{3}, e_{1}\right]=a e_{1}+e_{2}-a e_{3}, \omega\left(e_{1}, e_{2}\right)=$ $-2 a, \omega\left(e_{2}, e_{3}\right)=2 a$ and $\omega\left(e_{3}, e_{1}\right)=0$. It is $V I I I_{N a}$.
(9) $\left[e_{1}, e_{2}\right]=e_{3},\left[e_{2}, e_{3}\right]=e_{1}-a e_{2},\left[e_{3}, e_{1}\right]=e_{2}+a e_{1}, \omega\left(e_{1}, e_{2}\right)=2 a$, $\omega\left(e_{2}, e_{3}\right)=0$ and $\omega\left(e_{3}, e_{1}\right)=0$. It is type $I X_{a}$.
Here $a>0$ is a real number.
Remark 2.6. In the above classification, two ω-Lie algebras of types $V_{I} S$ and $V_{I} T$ are isomorphic, and there is no isomorphism for the other types of ω-Lie algebras. Assume that L_{ω} and L_{Ω} are ω-Lie algebras of types $V I_{S}$ and $V I_{T}$, respectively. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the basis of L_{ω} satisfying

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=-e_{1},\left[e_{2}, e_{3}\right]=e_{1}+e_{3},\left[e_{3}, e_{1}\right]=-e_{2}} \\
& \omega\left(e_{1}, e_{2}\right)=\omega\left(e_{2}, e_{3}\right)=0, \omega\left(e_{3}, e_{1}\right)=-2
\end{aligned}
$$

and let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be the basis of L_{Ω} satisfying

$$
\begin{aligned}
& {\left[E_{1}, E_{2}\right]=E_{2},\left[E_{2}, E_{3}\right]=E_{1},\left[E_{3}, E_{1}\right]=-E_{2}-E_{3}} \\
& \Omega\left(E_{1}, E_{2}\right)=\Omega\left(E_{3}, E_{1}\right)=0, \Omega\left(E_{2}, E_{3}\right)=2
\end{aligned}
$$

Define a linear map f from L_{ω} to L_{Ω} by

$$
f\left(e_{1}\right)=E_{2}, f\left(e_{2}\right)=E_{1}, f\left(e_{3}\right)=E_{3} .
$$

It is easy to see that $f \in \operatorname{Isom}\left(L_{\omega}, L_{\Omega}\right)=\operatorname{Isom}_{\omega, \Omega}\left(L_{\omega}, L_{\Omega}\right)$.
Definition 2.7 ([21]). Let L_{ω} be an ω-Lie algebra and M a vector space. If there is a linear map $\psi: L_{\omega} \rightarrow \operatorname{End}(M)$ such that

$$
\psi([x, y]) m=\psi(x) \psi(y) m-\psi(y) \psi(x) m+\omega(x, y) m, \forall x, y \in L_{\omega}, m \in M
$$

then (ψ, M) or ψ is called a representation of L_{ω}.

3. ω-left-symmetric algebras

Definition 3.1 ([19]). Let V_{ω} be a vector space over \mathbb{F} with a bilinear map $(x, y) \mapsto x y$. If there is a bilinear map $\omega: V_{\omega} \times V_{\omega} \rightarrow \mathbb{F}$ such that

$$
\begin{equation*}
(x y) z-x(y z)-(y x) z+y(x z)=\omega(x, y) z, \forall x, y, z \in V_{\omega} \tag{3.1}
\end{equation*}
$$

Then V_{ω} is called an ω-left-symmetric algebra.
For an ω-left-symmetric algebra V_{ω}, it is easy to check that
(1) ω is skew-symmetric, and clearly V_{ω} is a left-symmetric algebra if $\omega=0$.
(2) V_{ω} is an ω-Lie algebra under the commutator $[x, y]=x y-y x$. Denote it by $\left(V_{\omega},[\cdot, \cdot]\right)$.
(3) Define a linear map $l: V_{\omega} \rightarrow \operatorname{End}\left(V_{\omega}\right)$ by $l(x)(y)=l_{x}(y)=x y$. Then l is a representation of the ω-Lie algebra $\left(V_{\omega},[,, \cdot]\right)$.
That is, an ω-left-symmetric algebra can be considered as an extension of a left symmetric algebra, and the relationship between ω-left-symmetric algebra and ω-Lie algebra is similar to that between Lie algebra and left-symmetric algebra. The following is to classify ω-left-symmetric algebras in low dimensions which are not left-symmetric algebras, i.e., $\omega \neq 0$.

Theorem 3.2 ([19]). Let V_{ω} be an ω-left-symmetric algebra in dimension 2 with $\omega \neq 0$. Then there is a basis $\left\{e_{1}, e_{2}\right\}$ of V_{ω} such that $\omega\left(e_{1}, e_{2}\right)=1$, and
(1) $e_{1} e_{1}=e_{1}, e_{1} e_{2}=e_{2}, e_{2} e_{1}=-e_{1}+e_{2}, e_{2} e_{2}=a e_{1}+b e_{2}$, or
(2) $e_{1} e_{1}=e_{1}+a e_{2}, e_{1} e_{2}=e_{2}, e_{2} e_{1}=-e_{1}+e_{2}, e_{2} e_{2}=-2 e_{2}$.

We will classify ω-left-symmetric algebras of dimension 3 over \mathbb{R} based on the classification of ω-Lie algebras given by Nurowski. Assume that V_{ω} is an ω-left-symmetric algebra of dimension 3 with the product $(x, y) \mapsto x y$. Then V_{ω} is an ω-Lie algebra of dimension 3 under the commutator $[x, y]=x y-y x$. Suppose that there is a basis in V_{ω} such that

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=k^{i} e_{i}, \quad\left[e_{2}, e_{3}\right]=l^{i} e_{i},\left[e_{3}, e_{1}\right]=p^{i} e_{i} .} \\
& \omega\left(e_{1}, e_{2}\right)=c_{12}, \omega\left(e_{2}, e_{3}\right)=c_{23}, \omega\left(e_{3}, e_{1}\right)=c_{31} .
\end{aligned}
$$

Then the product of the ω-left-symmetric algebra is equivalent to that, for any $x \in V_{\omega}$,

$$
\begin{aligned}
& \left(e_{1} e_{2}\right) x-e_{1}\left(e_{2} x\right)-\left(e_{2} e_{1}\right) x+e_{2}\left(e_{1} x\right)=c_{12} x \\
& \left(e_{2} e_{3}\right) x-e_{2}\left(e_{3} x\right)-\left(e_{3} e_{2}\right) x+e_{3}\left(e_{2} x\right)=c_{23} x \\
& \left(e_{3} e_{1}\right) x-e_{3}\left(e_{1} x\right)-\left(e_{1} e_{3}\right) x+e_{1}\left(e_{3} x\right)=c_{31} x
\end{aligned}
$$

Let l_{x} denote the left multiplication on V_{ω}, i.e., $l_{x}(y)=x y$, and denote by A, B, C the matrices of $l_{e_{1}}, l_{e_{2}}, l_{e_{3}}$ under the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, respectively, i.e.,

$$
\begin{aligned}
& l_{e_{1}}\left(e_{1}, e_{2}, e_{3}\right)=\left(e_{1}, e_{2}, e_{3}\right) A \\
& l_{e_{2}}\left(e_{1}, e_{2}, e_{3}\right)=\left(e_{1}, e_{2}, e_{3}\right) B \\
& l_{e_{3}}\left(e_{1}, e_{2}, e_{3}\right)=\left(e_{1}, e_{2}, e_{3}\right) C
\end{aligned}
$$

Then the above equations are equivalent to

$$
\left\{\begin{array}{l}
k^{i} l_{e_{i}}-A B+B A=c_{12} \tag{3.2}\\
l^{i} l_{e_{i}}-B C+C B=c_{23} \\
p^{i} l_{e_{i}}-C A+A C=c_{31}
\end{array}\right.
$$

3.1. $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $I V_{T}$ as an ω-Lie algebra

Then there is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=e_{2},\left[e_{2}, e_{3}\right]=e_{1},\left[e_{3}, e_{1}\right]=-e_{3}} \\
& \omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=2, \omega\left(e_{3}, e_{1}\right)=0
\end{aligned}
$$

It is easy to see that $\left(V_{\omega},[\cdot, \cdot]\right)$ is simple as an ω-Lie algebra. Moreover, we have

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
a_{12} & b_{12} & b_{13} \\
a_{22}-1 & b_{22} & b_{23} \\
a_{32} & b_{32} & b_{33}
\end{array}\right), C=\left(\begin{array}{ccc}
a_{13} & b_{13}-1 & c_{13} \\
a_{23} & b_{23} & c_{23} \\
a_{33}-1 & b_{33} & c_{33}
\end{array}\right) .
$$

By (3.2), we have

$$
A B-B A-B=0, B C-C B-A+2 I=0, A C-C A-C=0 .
$$

By the second one, we have $A=[B, C]+2 I$. Putting into the other two, we have

$$
B=[[B, C], B], C=[[B, C], C] .
$$

It means that $\{B, C,[B, C]\}$ generates a Lie subalgebra of $\mathbb{R}^{3 \times 3}$. Then

$$
[[B, C],[B, C]]+[[C,[B, C]], B]+[[[B, C], B], C]=0
$$

It follows that $2[B, C]=0$. Then $B=C=[B, C]=0$, which is impossible.
That is, there is no ω-left-symmetric algebra V_{ω} such that $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $I V_{T}$.

3.2. ($V_{\omega},[\cdot, \cdot]$) is type $V I_{T}$ as an ω-Lie algebra

Then there is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=e_{2},\left[e_{2}, e_{3}\right]=e_{1},\left[e_{3}, e_{1}\right]=-e_{2}-e_{3}} \\
& \omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=2, \omega\left(e_{3}, e_{1}\right)=0
\end{aligned}
$$

Clearly, $\left(V_{\omega},[\cdot, \cdot]\right)$ is simple. Moreover, we have

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right), B=\left(\begin{array}{ccc}
a_{12} & b_{12} & b_{13} \\
a_{22}-1 & b_{22} & b_{23} \\
a_{32} & b_{32} & b_{33}
\end{array}\right), C=\left(\begin{array}{ccc}
a_{13} & b_{13}-1 & c_{13} \\
a_{23}-1 & b_{23} & c_{23} \\
a_{33}-1 & b_{33} & c_{33}
\end{array}\right)
$$

By (3.2), we have

$$
A B-B A-B=0, B C-C B-A+2 I=0, A C-C A-C-B=0 .
$$

By the second one, we have $A=[B, C]+2 I$. Putting into the other two, we have

$$
B=[[B, C], B], B+C=[[B, C], C] .
$$

That is, $\{B, C,[B, C]\}$ generates a Lie subalgebra of $\mathbb{R}^{3 \times 3}$. Then

$$
[[B, C],[B, C]]+[[C,[B, C]], B]+[[[B, C], B], C]=0
$$

It follows that $[B, C]=0$. Then $B=C=[B, C]=0$, which is impossible.
That is, there is no ω-left-symmetric algebra V_{ω} such that $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $V I_{T}$.

3.3. ($\left.V_{\omega},[\cdot, \cdot]\right)$ is type $V I_{N}$ as an ω-Lie algebra

Then there is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=e_{2}-e_{1},\left[e_{2}, e_{3}\right]=e_{1}+e_{3},\left[e_{3}, e_{1}\right]=-e_{3}-e_{2}} \\
& \omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=2, \omega\left(e_{3}, e_{1}\right)=-2
\end{aligned}
$$

Clearly, $\left(V_{\omega},[\cdot, \cdot]\right)$ is not simple. Moreover, we have

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & c_{11} \\
a_{21} & a_{22} & c_{21}+1 \\
a_{31} & a_{32} & c_{31}+1
\end{array}\right), B=\left(\begin{array}{ccc}
a_{12}+1 & b_{12} & c_{12}+1 \\
a_{22}-1 & b_{22} & c_{22} \\
a_{32} & b_{32} & c_{32}+1
\end{array}\right), C=\left(\begin{array}{ccc}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right) .
$$

By (3.2), we have
$B-A-A B+B A=0, A+C-B C+C B=2 I,-B-C-C A+A C=-2 I$.
That is,

$$
B-A=[A, B], A+C=2 I+[B, C], B+C=2 I+[A, C]
$$

Consider the dimension k of the Lie algebra L generated by $\{A, B, C, I\}$.
First we know $k \neq 1$.
If $k=4$, then $\{A, B, C, I\}$ is a basis of L. Moreover, under this basis, we have

$$
\operatorname{ad}_{A}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -2 & 0
\end{array}\right), \operatorname{ad}_{B}=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -2 & 0
\end{array}\right)
$$

It follows that

$$
\operatorname{ad}_{B-A}=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \operatorname{ad}_{[A, B]}=\left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
-1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

It contradicts to $B-A=[A, B]$.
If $k=3$, we divide into four cases:
(1) $\{A, B, C\}$ is a basis of L. Let $2 I=x A+y B+z C$. Then

$$
\begin{aligned}
& B-A=[A, B], \quad(1-x) A-y B+(1-z) C=[B, C] \\
& -x A+(1-y) B+(1-z) C=[A, C]
\end{aligned}
$$

It means that

$$
\operatorname{ad}_{A}=\left(\begin{array}{ccc}
0 & -1 & -x \\
0 & 1 & 1-y \\
0 & 0 & 1-z
\end{array}\right), \operatorname{ad}_{B}=\left(\begin{array}{ccc}
1 & 0 & 1-x \\
-1 & 0 & y \\
0 & 0 & 1-z
\end{array}\right), \operatorname{ad}_{C}=\left(\begin{array}{ccc}
x & x-1 & 0 \\
y-1 & y & 0 \\
z-1 & z-1 & 0
\end{array}\right) .
$$

Since $2 I \in L$ and $\operatorname{ad}_{2 I}=0$, we have $x \operatorname{ad}_{A}+y \operatorname{ad}_{B}+z \operatorname{ad}_{C}=0$, i.e.,

$$
0=\left(\begin{array}{ccc}
y+x z & z(x-1)-x & -y(x-1)-x^{2} \\
z(y-1)-y & x+y z & -x(y-1)-y^{2} \\
z(z-1) & z(z-1) & -(x+y)(z-1)
\end{array}\right) .
$$

By $z(z-1)=0$, we have $z=0$ or $z=1$. If $z=1$, then $z(y-1)-y=-1 \neq 0$, which is a contradiction. Thus $z=0$. Thus $x=y=0$. It follows that $2 I=x A+y B+c Z=0$, which is also a contradiction.
(2) $\{A, B, I\}$ is a basis of L. Let $C=x A+y B+z I$. Then we have

$$
\begin{aligned}
& B-A=[A, B], \quad(1+x) A+y B+(z-2) I=-x[A, B] \\
& x A+(1+y) B+(z-2) I=y[A, B]
\end{aligned}
$$

Putting the first one into the second one, we have $A+(x+y) B+(z-2) I=0$, which is impossible.
(3) $\{A, C, I\}$ is a basis of L. Let $B=x A+y C+z I$. Then we have

$$
\begin{aligned}
& (x-1) A+y C+z I=y[A, C], \quad A+C-2 I=x[A, C], \\
& x A+(1+y) C+(z-2) I=[A, C] .
\end{aligned}
$$

Putting the third one into the first and second one, we have $y=z=0$ and $x=1$. That is, $A=B$ and $A+C=2 I$, which is impossible.
(4) $\{B, C, I\}$ is a basis of L. Let $A=x B+y C+z I$. Then we have

$$
\begin{aligned}
& (1-x) B-y C-z I=-y[B, C], \\
& x B+(1+y) C+(z-2) I=[B, C], \quad B+C-2 I=x[B, C] .
\end{aligned}
$$

Putting the second one into the first and third one, we have $y=z=0$ and $x=1$. That is, $A=B$ and $B+C=2 I$, which is impossible.

If $k=2$, we will discuss the following three cases:
(1) If $\{A, I\}$, or $\{B, I\}$, or $\{C, I\}$ is a basis of L, then $[A, B]=[A, C]=$ $[B, C]=0$. Then $A=B$ and $A+C=2 I$. That is,
$A=\left(\begin{array}{ccc}a_{1} & a_{1}-1 & 2-a_{1} \\ a_{2} & a_{2}+1 & 1-a_{2} \\ a_{3} & a_{3} & 1-a_{3}\end{array}\right), \quad B=\left(\begin{array}{ccc}a_{1} & a_{1}-1 & 2-a_{1} \\ a_{2} & a_{2}+1 & 1-a_{2} \\ a_{3} & a_{3} & 1-a_{3}\end{array}\right), \quad C=\left(\begin{array}{ccc}2-a_{1} & 1-a_{1} & a_{1}-2 \\ -a_{2} & 1-a_{2} & -1+a_{2} \\ -a_{3} & -a_{3} & 1+a_{3}\end{array}\right)$.
(2) If $\{A, B\}$ is a basis of L, then we have that $A-B=[B-A, C]=$ $[[A, B], C]=0$, i.e., $A=B$, which is impossible.
(3) If $\{A, C\}$ or $\{B, C\}$ is a basis of L, we have the same solution as (1).

That is, if V_{ω} is an ω-left-symmetric algebra such that $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $V I_{N}$, then there exists a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of V_{ω} such that

$$
\left\{\begin{array}{l}
e_{1} e_{1}=e_{2} e_{1}=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}=2 e_{1}-e_{3} e_{1} \\
e_{1} e_{2}=e_{2} e_{2}=\left(a_{1}-1\right) e_{1}+\left(a_{2}+1\right) e_{2}+a_{3} e_{3}=2 e_{2}-e_{3} e_{2} \\
e_{1} e_{3}=e_{2} e_{3}=\left(2-a_{1}\right) e_{1}+\left(1-a_{2}\right) e_{2}+\left(1-a_{3}\right) e_{3}=2 e_{3}-e_{3} e_{3} \\
\omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=2, \omega\left(e_{3}, e_{1}\right)=-2
\end{array}\right.
$$

3.4. ($V_{\omega},[\cdot, \cdot]$) is type $V I I_{T}$ as an ω-Lie algebra

Then there is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=e_{2},\left[e_{2}, e_{3}\right]=e_{1},\left[e_{3}, e_{1}\right]=e_{2}-e_{3}} \\
& \omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=2, \omega\left(e_{3}, e_{1}\right)=0
\end{aligned}
$$

Clearly, $\left(V_{\omega},[\cdot, \cdot]\right)$ is simple. Moreover we have

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
a_{12} & b_{12} & b_{13} \\
a_{22}-1 & b_{22} & b_{23} \\
a_{32} & b_{32} & b_{33}
\end{array}\right), \quad C=\left(\begin{array}{ccc}
a_{13} & b_{13}-1 & c_{13} \\
a_{23}+1 & b_{23} & c_{23} \\
a_{33}-1 & b_{33} & c_{33}
\end{array}\right) .
$$

By (3.2), we have

$$
B-A B+B A=0, A-B C+C B=2 I, B-C+A C-C A=0 .
$$

It means that

$$
B=[[B, C], B],-B+C=[[B, C], C] .
$$

That is, $\{B, C,[B, C]\}$ generates a Lie subalgebra of $\mathbb{R}^{3 \times 3}$. Then

$$
[[B, C],[B, C]]+[[C,[B, C]], B]+[[[B, C], B], C]=0
$$

It gives $2[B, C]=0$, furthermore $B=C=[B, C]=0$, which is impossible.
That is, there is no ω-left-symmetric algebra V_{ω} such that $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $V I I_{T}$.

3.5. ($V_{\omega},[\cdot, \cdot]$) is type $V I I I_{a}$ as an ω-Lie algebra

Then there is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=-e_{3},\left[e_{2}, e_{3}\right]=e_{1}-a e_{2},\left[e_{3}, e_{1}\right]=a e_{1}+e_{2}} \\
& \omega\left(e_{1}, e_{2}\right)=-2 a, \omega\left(e_{2}, e_{3}\right)=0, \omega\left(e_{3}, e_{1}\right)=0, a>0
\end{aligned}
$$

Clearly, $\left(V_{\omega},[\cdot, \cdot]\right)$ is simple. Moreover we have

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & c_{11}-a \\
a_{21} & a_{22} & c_{21}-1 \\
a_{31} & a_{32} & c_{31}
\end{array}\right), B=\left(\begin{array}{ccc}
a_{12} & b_{12} & c_{12}+1 \\
a_{22} & b_{22} & c_{22}-a \\
a_{32}+1 & b_{32} & c_{32}
\end{array}\right), C=\left(\begin{array}{ccc}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right)
$$

By (3.2), we have

$$
\begin{aligned}
& -C-A B+B A=-2 a I, \quad A-a B-B C+C B=0, \\
& a A+B+A C-C A=0 .
\end{aligned}
$$

Then we have

$$
-A+a B=[[B, A], B], a A+B=[[B, A], A] .
$$

That is, $\{B, A,[B, A]\}$ generates a Lie subalgebra of $\mathbb{R}^{3 \times 3}$. Then we know

$$
[[B, A],[B, A]]+[[A,[B, A]], B]+[[[B, A], B], A]=0 .
$$

It follows that $2 a[B, A]=0$, so $B=A=[B, A]=0$, which is impossible.
That is, there is no ω-left-symmetric algebra V_{ω} such that $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $V I I I_{a}$.

3.6. $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $V I I I_{T a}$ as an ω-Lie algebra

Then there is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=a e_{2}-e_{3},\left[e_{2}, e_{3}\right]=e_{1},\left[e_{3}, e_{1}\right]=e_{2}-a e_{3}} \\
& \omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=2 a, \omega\left(e_{3}, e_{1}\right)=0, a>0
\end{aligned}
$$

Clearly, $\left(V_{\omega},[\cdot, \cdot]\right)$ is simple for $a \neq 1$. Moreover we have

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
a_{12} & b_{12} & b_{13} \\
a_{22}-a & b_{22} & b_{23} \\
a_{32}+1 & b_{32} & b_{33}
\end{array}\right), \quad C=\left(\begin{array}{ccc}
a_{13} & b_{13}-1 & c_{13} \\
a_{23}+1 & b_{23} & c_{23} \\
a_{33}-a & b_{33} & c_{33}
\end{array}\right) .
$$

By (3.2), we have

$$
a B-C-A B+B A=0, A-B C+C B=2 a I, B-a C+A C-C A=0 .
$$

It means that

$$
a B-C=[[B, C], B],-B+a C=[[B, C], C] .
$$

That is, $\{B, C,[B, C]\}$ generates a Lie subalgebra of $\mathbb{R}^{3 \times 3}$. Then we know

$$
[[B, C],[B, C]]+[[C,[B, C]], B]+[[[B, C], B], C]=0
$$

It gives $2[B, C]=0$, then $B=C$. Since it is impossible for $B=C=0$, we have $A=2 I$ and $a=1$. Then we have

$$
A=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), B=C=\left(\begin{array}{ccc}
0 & a_{1} & a_{1}+1 \\
1 & a_{2} & a_{2} \\
1 & a_{3} & a_{3}
\end{array}\right) .
$$

That is, if V_{ω} is an ω-left-symmetric algebra such that $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $V I I I_{T a}$, then $a=1$ and there exists a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of V_{ω} such that

$$
\left\{\begin{array}{l}
e_{1} e_{1}=2 e_{1}, e_{1} e_{2}=2 e_{2}, e_{1} e_{3}=2 e_{3} \\
e_{2} e_{1}=e_{3} e_{1}=e_{2}+e_{3} \\
e_{2} e_{2}=e_{3} e_{2}=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \\
e_{2} e_{3}=e_{3} e_{3}=\left(a_{1}+1\right) e_{1}+a_{2} e_{2}+a_{3} e_{3} \\
\omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=2, \omega\left(e_{3}, e_{1}\right)=0
\end{array}\right.
$$

3.7. $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $V I I I_{N a}$ as an ω-Lie algebra

Then there is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=a e_{2}-e_{3},\left[e_{2}, e_{3}\right]=e_{1}-a e_{2},\left[e_{3}, e_{1}\right]=a e_{1}+e_{2}-a e_{3}} \\
& \omega\left(e_{1}, e_{2}\right)=-2 a, \omega\left(e_{2}, e_{3}\right)=2 a, \omega\left(e_{3}, e_{1}\right)=0, a>0
\end{aligned}
$$

Clearly $\left(V_{\omega},[\cdot, \cdot]\right)$ is simple. Moreover we have

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
a_{12} & b_{12} & b_{13} \\
a_{22}-a & b_{22} & b_{23} \\
a_{32}+1 & b_{32} & b_{33}
\end{array}\right), C=\left(\begin{array}{ccc}
a_{13}+a & b_{13}-1 & c_{13} \\
a_{23}+1 & b_{23}+a & c_{23} \\
a_{33}-a & b_{33} & c_{33}
\end{array}\right) .
$$

By (3.2), we have

$$
\begin{aligned}
& a B-C-A B+B A=-2 a I, \quad A-a B-B C+C B=2 a I, \\
& a A+B-a C+A C-C A=0 .
\end{aligned}
$$

That is,

$$
a B-C+2 a I=[A, B], A-a B-2 a I=[B, C],-a A-B+a C=[A, C] .
$$

Let L be the Lie subalgebra of $\mathbb{R}^{3 \times 3}$ generated by $\{A, B, C, I\}$ with the dimension k.

Case 1: $k=4$. Then we have

$$
\operatorname{ad}_{A}=\left(\begin{array}{cccc}
0 & 0 & -a & 0 \\
0 & a & -1 & 0 \\
0 & -1 & a & 0 \\
0 & 2 a & 0 & 0
\end{array}\right), \operatorname{ad}_{B}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-a & 0 & -a & 0 \\
1 & 0 & 0 & 0 \\
-2 a & 0 & -2 a & 0
\end{array}\right), \operatorname{ad}_{C}=\left(\begin{array}{cccc}
a & -1 & 0 & 0 \\
1 & a & 0 & 0 \\
-a & 0 & 0 & 0 \\
0 & 2 a & 0 & 0
\end{array}\right) .
$$

By $\operatorname{ad}_{[A, B]}=\operatorname{ad}_{a B-C+2 a I}$, we have $a=0$, which is impossible.
Case 2: $k=3$. We will discuss the following cases:
(1) If $\{A, B, C\}$ is a basis of L, let $2 a I=x A+y B+z C$, then we have

$$
\begin{aligned}
x A+(y+a) B+(z-1) C & =[A, B] \\
(1-x) A-(y+a) B-z C & =[B, C], \quad-a A-B+a C=[A, C] .
\end{aligned}
$$

Under this basis, we have

$$
\operatorname{ad}_{A}=\left(\begin{array}{ccc}
0 & x & -a \\
0 & y+a & -1 \\
0 & z-1 & a
\end{array}\right), \operatorname{ad}_{B}=\left(\begin{array}{ccc}
-x & 0 & 1-x \\
-y-a & 0 & -y-a \\
1-z & 0 & -z
\end{array}\right), \operatorname{ad}_{C}=\left(\begin{array}{ccc}
a & x-1 & 0 \\
1 & y+a & 0 \\
-a & z & 0
\end{array}\right) .
$$

Then by $\mathrm{ad}_{-a A-B+a C}=\operatorname{ad}_{[A, C]}$, we have

$$
\left(\begin{array}{ccc}
a^{2}+x & -a & a^{2}+x-1 \\
2 a+y & 0 & 2 a+y \\
-a^{2}+z-1 & a & -a^{2}+z
\end{array}\right)=\left(\begin{array}{ccc}
a^{2}+x & a+y-a x-a z & a^{2}+x-1 \\
2 a+y & -x-z & 2 a+y \\
-a^{2}+z-1 & a x-y-a+a z & -a^{2}+z
\end{array}\right) .
$$

It follows that $x=-z$ and $y=-2 a$. Then $2 a I=x(A-C)-2 a B$, so $\operatorname{ad}_{x(A-C)-2 a B}=0$. That is,

$$
\left(\begin{array}{ccc}
a x & x & a x-2 a \\
-x-2 a^{2} & 0 & -x-2 a^{2} \\
-2 a-a x & -x & -a x
\end{array}\right)=0
$$

it follows that $x=0$ and $a=0$, which is impossible.
(2) If $\{A, B, 2 a I\}$ is a basis of L, assume that $\{A, B, C\}$ is linear dependent by (1), then $C=x A+y B$. It follows that

$$
\begin{aligned}
& -x A+(-y+a) B+2 a I=[A, B], \quad A-a B-2 a I=-x[A, B] \\
& (a x-a) A-(a y-1) B=y[A, B] .
\end{aligned}
$$

It gives $y=0$, which is impossible. Similarly, we can show that $\{A, C, 2 a I\}$ and $\{C, B, 2 a I\}$ are not the basis of L.

Case 3: $k=2$. We discuss the following cases.
(1) $\{A, 2 a I\}$, or $\{B, 2 a I\}$, or $\{C, 2 a I\}$ is basis of L. For any case, then we have

$$
a B-C+2 a I=0, A-a B-2 a I=0,-a A-B+a C=0
$$

It gives $A=C$ and $B=0$, which is impossible.
(2) $\{A, B\}$, or $\{A, C\},\{C, B\}$ is a basis of L. For the first case, let $C=$ $x A+y B$ and $2 a I=p A+q B$. Then we have

$$
\left\{\begin{array} { l }
{ 1 - p = x (x - p) , } \tag{iii}\\
{ a + q = x (q + a - y) , }
\end{array} \quad \text { (ii) } \quad \text { (i) } \quad \text { and } \quad \left\{\begin{array}{l}
a(x-1)=y(p-x) \\
a y-1=y(q+a-y)
\end{array}\right.\right.
$$

By (i), we have $p=x+1$ or $x=1$. If $x=1$, then $y=0$ by (ii), but (iv) doesn't hold. So $p=x+1$, then $y=a(x-1)$ by (iii). Then

$$
a y-1=y(q+a-y)=a(x-1)(q+a-y)=a(a+q)-a(q+a-y)=a y
$$

which is impossible.

Clearly $k \neq 1$. That is, there is no ω-left-symmetric algebra V_{ω} such that $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $V I I I_{N a}$.

3.8. $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $I X_{a}$ as an ω-Lie algebra

Then there is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=e_{3},\left[e_{2}, e_{3}\right]=e_{1}-a e_{2},\left[e_{3}, e_{1}\right]=a e_{1}+e_{2},} \\
& \omega\left(e_{1}, e_{2}\right)=2 a, \omega\left(e_{2}, e_{3}\right)=0, \omega\left(e_{3}, e_{1}\right)=0, a>0
\end{aligned}
$$

Clearly $\left(V_{\omega},[\cdot, \cdot]\right)$ is simple. Moreover we have

$$
A=\left(\begin{array}{ccc}
a_{11} & b_{11} & c_{11}-a \\
a_{21} & b_{21} & c_{21}-1 \\
a_{31} & b_{31}+1 & c_{31}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
b_{11} & b_{12} & c_{12}+1 \\
b_{21} & b_{22} & c_{22}-a \\
b_{31} & b_{32} & c_{32}
\end{array}\right), C=\left(\begin{array}{ccc}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right) .
$$

By (3.2), we have

$$
\begin{aligned}
& C-2 a I-A B+B A=0, \quad A-a B-B C+C B=0, \\
& a A+B+A C-C A=0 .
\end{aligned}
$$

It means that

$$
A-a B=[B,[A, B]],-a A-B=[A,[A, B]] .
$$

That is, $\{B, A,[A, B]\}$ generates a Lie subalgebra of $\mathbb{R}^{3 \times 3}$. Then we know

$$
[[A, B],[A, B]]+[[B,[A, B]], A]+[[[A, B], A], B]=0 .
$$

It gives $2 a[A, B]=0$, then $[A, B]=0, C=2 a I$ and $a^{2}+1=0$, which is impossible.

That is, there is no ω-left-symmetric algebra V_{ω} such that $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $I X_{a}$.

In summary, we have the structure theorem of ω-left-symmetric algebras in dimension 3.

Theorem 3.3. Let V_{ω} be an ω-left-symmetric algebra over \mathbb{R} in dimension 3 . Then one of the following cases holds:
(1) V_{ω} is a left-symmetric algebra.
(2) $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $V I_{N}$, and there exists a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of V_{ω} such that

$$
\left\{\begin{array}{l}
e_{1} e_{1}=e_{2} e_{1}=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}=2 e_{1}-e_{3} e_{1} \\
e_{1} e_{2}=e_{2} e_{2}=\left(a_{1}-1\right) e_{1}+\left(a_{2}+1\right) e_{2}+a_{3} e_{3}=2 e_{2}-e_{3} e_{2} \\
e_{1} e_{3}=e_{2} e_{3}=\left(2-a_{1}\right) e_{1}+\left(1-a_{2}\right) e_{2}+\left(1-a_{3}\right) e_{3}=2 e_{3}-e_{3} e_{3} \\
\omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=2, \omega\left(e_{3}, e_{1}\right)=-2
\end{array}\right.
$$

(3) $\left(V_{\omega},[\cdot, \cdot]\right)$ is type $V I I I_{T a}$ with $a=1$, and there exists a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of V_{ω} such that

$$
\left\{\begin{array}{l}
e_{1} e_{1}=2 e_{1}, e_{1} e_{2}=2 e_{2}, e_{1} e_{3}=2 e_{3} \\
e_{2} e_{1}=e_{3} e_{1}=e_{2}+e_{3} \\
e_{2} e_{2}=e_{3} e_{2}=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \\
e_{2} e_{3}=e_{3} e_{3}=\left(a_{1}+1\right) e_{1}+a_{2} e_{2}+a_{3} e_{3} \\
\omega\left(e_{1}, e_{2}\right)=0, \omega\left(e_{2}, e_{3}\right)=2, \omega\left(e_{3}, e_{1}\right)=0
\end{array}\right.
$$

4. The isomorphism of $\boldsymbol{\omega}$-left-symmetric algebras

Definition 4.1. Let V_{ω} and V_{Ω} be ω-left-symmetric algebras over \mathbb{F}. If there is a linear isomorphism $\rho: V_{\omega} \rightarrow V_{\Omega}$ such that

$$
\rho(x y)=\rho(x) \rho(y), \forall x, y \in V_{\omega},
$$

then ρ is called an isomorphism from V_{ω} to V_{Ω}. Furthermore, if $\omega(x, y)=$ $\Omega(\rho(x), \rho(y))$, then ρ is called an ω-isomorphism.

Denote by $\operatorname{Isom}\left(V_{\omega}, V_{\Omega}\right)$ and $\operatorname{Isom}_{\omega, \Omega}\left(V_{\omega}, V_{\Omega}\right)$ the sets of isomorphisms and ω-isomorphisms from V_{ω} to V_{Ω}, respectively. Clearly

$$
\operatorname{Isom}_{\omega, \Omega}\left(V_{\omega}, V_{\Omega}\right) \subseteq \operatorname{Isom}\left(V_{\omega}, V_{\Omega}\right)
$$

Proposition 4.2. Let V_{ω} and V_{Ω} be ω-left-symmetric algebras with $\operatorname{dim} V_{\omega}=$ $\operatorname{dim} V_{\Omega} \geq 1$. Then

$$
\operatorname{Isom}\left(V_{\omega}, V_{\Omega}\right)=\operatorname{Isom}_{\omega, \Omega}\left(V_{\omega}, V_{\Omega}\right)
$$

Proof. It is enough to prove $\operatorname{Isom}\left(V_{\omega}, V_{\Omega}\right) \subseteq \operatorname{Isom}_{\omega, \Omega}\left(V_{\omega}, V_{\Omega}\right)$. For any $\rho \in$ $\operatorname{Isom}\left(V_{\omega}, V_{\Omega}\right)$,

$$
\begin{aligned}
\omega(x, y) \rho(z) & =\rho((x y) z-x(y z)-(y x) z+y(x z)) \\
& =(\rho(x) \rho(y)) \rho(z)-\rho(x)(\rho(y) \rho(z))-(\rho(y) \rho(x)) \rho(z)+\rho(y)(\rho(x) \rho(z)) \\
& =\Omega(\rho(x), \rho(y)) \rho(z)
\end{aligned}
$$

by the definitions of ω-left-symmetric algebras and isomorphisms. For any $x, y \in V_{\omega}$, there exists $0 \neq z \in V_{\omega}$, then $\rho(z) \neq 0$. Hence we have $\Omega(\rho(x), \rho(y))$ $=\omega(x, y)$, i.e., $\rho \in \operatorname{Isom}_{\omega, \Omega}\left(V_{\omega}, V_{\Omega}\right)$.

In the following, we will compute $\operatorname{Isom}\left(V_{\omega}, V_{\omega}\right)$ for V_{ω} in cases (2) and (3) of Theorem 3.3, and then discuss the classification up to an isomorphism (i.e., ω-isomorphism by Proposition 4.2). We first give a simple fact.

Lemma 4.3. Let V_{ω} be an ω-left-symmetric algebra and $\rho \in \operatorname{Isom}\left(V_{\omega}, V_{\omega}\right)$. If $x \in V_{\omega}$ such that $l_{x}=k I$, then $l_{\rho(x)}=k I$.
Proof. Since $\rho \in \operatorname{Isom}\left(V_{\omega}, V_{\omega}\right)$, we have $\rho(x) \rho(y)=\rho(x y)=k \rho(y)$ for any $y \in V_{\omega}$. Thus $l_{\rho(x)}=k I$.

Case (2) in Theorem 3.3. Then $\left\{f_{1}=e_{1}, f_{2}=e_{2}-e_{1}, f_{3}=e_{3}+e_{2}\right\}$ is a basis of V_{ω} such that

$$
\left\{\begin{array}{l}
f_{1} f_{1}=b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3} \\
f_{1} f_{2}=-f_{2}, f_{1} f_{3}=2 f_{1}+f_{2}+f_{3} \\
f_{2} f_{1}=f_{2} f_{2}=f_{2} f_{3}=0 \\
f_{3} f_{1}=2 f_{1}, f_{3} f_{2}=2 f_{2}, f_{3} f_{3}=2 f_{3}
\end{array}\right.
$$

Here b_{1}, b_{2}, b_{3} are arbitrary real numbers. Assume that $\rho \in \operatorname{Isom}\left(V_{\omega}, V_{\omega}\right)$. By Lemma 4.3 and the algebraic structure, we must have

$$
\rho\left(f_{2}\right)=b f_{2}, \rho\left(f_{3}\right)=-a f_{2}+f_{3}, b \neq 0
$$

Furthermore, by $\rho\left(f_{1} f_{2}\right)=\rho\left(f_{1}\right) \rho\left(f_{2}\right)$ and $\rho\left(f_{1} f_{3}\right)=\rho\left(f_{1}\right) \rho\left(f_{3}\right)$, we have

$$
\rho\left(f_{1}\right)=f_{1}+\left(a+\frac{1-b}{2}\right) f_{2} .
$$

Moreover, $\rho\left(f_{1} f_{1}\right)=\rho\left(f_{1}\right) \rho\left(f_{1}\right)$ if and only if for the coefficient of f_{2},

$$
\left(b_{1}-b_{3}+1\right) a=\frac{\left(2 b_{2}-b_{1}-1\right)(1-b)}{2}
$$

Set $f_{i}^{\prime}=\rho\left(f_{i}\right)$. Then we have the following cases:
(1) If $2 b_{2}-b_{3} \neq 0$, set $a=\frac{b_{2}\left(2 b_{2}-b_{1}-1\right)}{2 b_{2}-b_{3}}$ and $\frac{1-b}{2}=\frac{b_{2}\left(b_{1}-b_{3}+1\right)}{2 b_{2}-b_{3}}$, we have $\left\{\begin{array}{l}f_{1}^{\prime} f_{1}^{\prime}=b_{1} f_{1}^{\prime}+b_{3} f_{3}^{\prime}, f_{1}^{\prime} f_{2}^{\prime}=-f_{2}^{\prime}, f_{1}^{\prime} f_{3}^{\prime}=2 f_{1}^{\prime}+f_{2}^{\prime}+f_{3}^{\prime}, \\ f_{2}^{\prime} f_{1}^{\prime}=f_{2}^{\prime} f_{2}^{\prime}=f_{2}^{\prime} f_{3}^{\prime}=0, f_{3}^{\prime} f_{1}^{\prime}=2 f_{1}^{\prime}, f_{3}^{\prime} f_{2}^{\prime}=2 f_{2}^{\prime}, f_{3}^{\prime} f_{3}^{\prime}=2 f_{3}^{\prime} .\end{array}\right.$
For this case, ω-left-symmetric algebras with different $\left(b_{1}, b_{3}\right)$ are not isomorphic.
(2) If $2 b_{2}-b_{3}=0$ and $2 b_{2}=b_{1}+1$, then a and $b \neq 0$ are arbitrary. Furthermore taking a and b such $b_{2}=a+\frac{1-b}{2}$, we have
$\left\{\begin{array}{l}f_{1}^{\prime} f_{1}^{\prime}=\left(2 b_{2}-1\right) f_{1}^{\prime}+2 b_{2} f_{3}^{\prime}, f_{1}^{\prime} f_{2}^{\prime}=-f_{2}^{\prime}, f_{1}^{\prime} f_{3}^{\prime}=2 f_{1}^{\prime}+f_{2}^{\prime}+f_{3}^{\prime}, \\ f_{2}^{\prime} f_{1}^{\prime}=f_{2}^{\prime} f_{2}^{\prime}=f_{2}^{\prime} f_{3}^{\prime}=0, f_{3}^{\prime} f_{1}^{\prime}=2 f_{1}^{\prime}, f_{3}^{\prime} f_{2}^{\prime}=2 f_{2}^{\prime}, f_{3}^{\prime} f_{3}^{\prime}=2 f_{3}^{\prime} .\end{array}\right.$
It is a special case of (1).
(3) If $2 b_{2}-b_{3}=0$ and $2 b_{2} \neq b_{1}+1$, then $a+\frac{1-b}{2}=0$. Furthermore we have
$\left\{\begin{array}{l}f_{1}^{\prime} f_{1}^{\prime}=b_{1} f_{1}^{\prime}+b_{2} f_{2}^{\prime}+2 b_{2} f_{3}^{\prime}, f_{1}^{\prime} f_{2}^{\prime}=-f_{2}^{\prime}, f_{1}^{\prime} f_{3}^{\prime}=2 f_{1}^{\prime}+f_{2}^{\prime}+f_{3}^{\prime}, \\ f_{2}^{\prime} f_{1}^{\prime}=f_{2}^{\prime} f_{2}^{\prime}=f_{2}^{\prime} f_{3}^{\prime}=0, f_{3}^{\prime} f_{1}^{\prime}=2 f_{1}^{\prime}, f_{3}^{\prime} f_{2}^{\prime}=2 f_{2}^{\prime}, f_{3}^{\prime} f_{3}^{\prime}=2 f_{3}^{\prime} .\end{array}\right.$
For this case, ω-left-symmetric algebras with different $\left(b_{1}, b_{2}\right)$ are not isomorphic.

Case (3) in Theorem 3.3. Then $\left\{f_{1}=e_{1}, f_{2}=e_{2}-e_{3}, f_{3}=e_{3}\right\}$ is a basis of V_{ω} such that

$$
\left\{\begin{array}{l}
f_{1} f_{1}=2 f_{1}, f_{1} f_{2}=2 f_{2}, f_{1} f_{3}=2 f_{3} \\
f_{2} f_{1}=f_{2} f_{2}=f_{2} f_{3}=0 \\
f_{3} f_{1}=f_{2}+2 f_{3}, f_{3} f_{2}=-f_{1} \\
f_{3} f_{3}=b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3}
\end{array}\right.
$$

Here $b_{1}=a_{1}+1, b_{2}=a_{2}$ and $b_{3}=a_{3}$ are arbitrary real numbers. Assume that $\rho \in \operatorname{Isom}\left(V_{\omega}, V_{\omega}\right)$. By Lemma 4.3 and the algebraic structure, we must have

$$
\rho\left(f_{1}\right)=f_{1}+a f_{2}, \rho\left(f_{2}\right)=b f_{2}, b \neq 0
$$

Furthermore, by $\rho\left(f_{3} f_{1}\right)=\rho\left(f_{3}\right) \rho\left(f_{1}\right)$ and $\rho\left(f_{3} f_{2}\right)=\rho\left(f_{3}\right) \rho\left(f_{2}\right)$, we have

$$
a=0, \rho\left(f_{3}\right)=\left(\frac{b}{2}-\frac{1}{2 b}\right) f_{2}+\frac{1}{b} f_{3} .
$$

Moreover, $\rho\left(f_{3} f_{3}\right)=\rho\left(f_{3}\right) \rho\left(f_{3}\right)$ means
$b_{1} f_{1}+b_{2} b f_{2}+b_{3}\left(\left(\frac{b}{2}-\frac{1}{2 b}\right) f_{2}+\frac{1}{b} f_{3}\right)=-\left(\frac{1}{2}-\frac{1}{2 b^{2}}\right) f_{1}+\frac{1}{b^{2}}\left(b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3}\right)$.
Then we have the following cases:
(1) If $b_{3} \neq 0$, then $b=1$. Thus $\rho=I$.
(2) If $b_{3}=0$ and $b_{2} \neq 0$, then $b=1$. Thus $\rho=I$.
(3) If $b_{2}=b_{3}=0, b_{1} \neq-\frac{1}{2}$, then $b= \pm 1$.
(4) If $b_{2}=b_{3}=0, b_{1}=-\frac{1}{2}$, then $b \neq 0$.

It follows that ω-left-symmetric algebras with different $\left(b_{1}, b_{2}, b_{3}\right)$ are not isomorphic.

References

[1] C. Bai, Bijective 1-cocycles and classification of 3-dimensional left-symmetric algebras, Comm. Algebra 37 (2009), no. 3, 1016-1057. https://doi.org/10.1080/ 00927870802279030
[2] B. Bakalov and V. G. Kac, Field algebras, Int. Math. Res. Not. 2003, no. 3, 123-159. https://doi.org/10.1155/S1073792803204232
[3] M. Bordemann, Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups, Comm. Math. Phys. 135 (1990), no. 1, 201-216. http://projecteuclid.org/euclid.cmp/1104201925
[4] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006), no. 3, 323-357. https://doi.org/10.2478/s11533-006-0014-9
[5] A. Cayley, On the theory of analytic forms called trees. Collected Mathematical Papers of Arthur Cayley, Cambridge Univ. Press, Vol. 3 (1890), 242-246.
[6] F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices 2001 (2001), no. 8, 395-408. https://doi.org/10.1155/ S1073792801000198
[7] Y. Chen, C. Liu, and R. Zhang, Classification of three-dimensional complex ω-Lie algebras, Port. Math. 71 (2014), no. 2, 97-108. https://doi.org/10.4171/PM/1943
[8] Y. Chen and R. Zhang, Simple ω-Lie algebras and 4-dimensional ω-Lie algebras over \mathbb{C}, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 3, 1377-1390. https://doi.org/10.1007/ s40840-015-0120-6
[9] Y. Chen, Z. Zhang, R. Zhang, and R. Zhuang, Derivations, automorphisms, and representations of complex ω-Lie algebras, Comm. Algebra 46 (2018), no. 2, 708-726. https://doi.org/10.1080/00927872.2017.1327062
[10] B. Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 197 (1974), 145159. https://doi.org/10.2307/1996932
[11] K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys. 61 (2002), no. 2, 139-147. https://doi.org/10.1023/A:1020712215075
[12] P. Etingof and A. Soloviev, Quantization of geometric classical r-matrices, Math. Res. Lett. 6 (1999), no. 2, 223-228. https://doi.org/10.4310/MRL.1999.v6.n2.a10
[13] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288. https://doi.org/10.2307/1970343
[14] I. Z. Golubchik and V. V. Sokolov, Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys. 7 (2000), no. 2, 184-197. https://doi.org/10.2991/jnmp.2000.7.2.8
[15] Y. Matsushima, Affine structures on complex manifolds, Osaka Math. J. 5 (1968), 215222. http://projecteuclid.org/euclid.ojm/1200692168
[16] A. Medina Perea, Flat left-invariant connections adapted to the automorphism structure of a Lie group, J. Differential Geom. 16 (1981), no. 3, 445-474 (1982). http: //projecteuclid.org/euclid.jdg/1214436223
[17] P. Nurowski, Deforming a Lie algebra by means of a 2-form, J. Geom. Phys. 57 (2007), no. 5, 1325-1329. https://doi.org/10.1016/j.geomphys.2006.10.008
[18] E. B. Vinberg, Convex homogeneous cones, Transl. Moscow Math. Soc. 12 (1963), 340403.
[19] L. Zhang, ω-left-symmetric algebras, The thesis of undergraduate students under Z. Chen's guidance, 2011.
[20] R. Zhang, Representations of ω-Lie algebras and tailed derivations of Lie algebras, Internat. J. Algebra Comput. 31 (2021), no. 2, 325-339. https://doi.org/10.1142/ S021819672150017X
[21] P. Zusmanovich, ω-Lie algebras, J. Geom. Phys. 60 (2010), no. 6-8, 1028-1044. https: //doi.org/10.1016/j.geomphys.2010.03.005

Zhiqi Chen

School of Mathematics and Statistics
Guangdong University of Technology
Guangzhou 510520, P. R. China
Email address: chenzhiqi@nankai.edu.cn
Yang Wu
School of Mathematical Sciences and LPMC
Nankai University
Tianjin 300071, P. R. China
Email address: wy728654559@163.com

[^0]: Received May 28, 2022; Revised November 18, 2022; Accepted December 15, 2022.
 2020 Mathematics Subject Classification. Primary 17A30, 17B60.
 Key words and phrases. ω-Lie algebra, ω-left-symmetric algebra, ω-isomorphism, isomorphism.

 This work was partially supported by NNSF of China (11931009 and 12131012) and Guangdong Basic and Applied Basic Research Foundation (2023A1515010001).

