Bull. Korean Math. Soc. **60** (2023), No. 3, pp. 747–762 https://doi.org/10.4134/BKMS.b220365 pISSN: 1015-8634 / eISSN: 2234-3016

THE CLASSIFICATION OF ω -LEFT-SYMMETRIC ALGEBRAS IN LOW DIMENSIONS

Zhiqi Chen and Yang Wu

ABSTRACT. ω -left-symmetric algebras contain left-symmetric algebras as a subclass and the commutator defines an ω -Lie algebra. In this paper, we classify ω -left-symmetric algebras in dimension 3 up to an isomorphism based on the classification of ω -Lie algebras and the technique of Lie algebras.

1. Introduction

A vector space L over \mathbb{F} is called an ω -Lie algebra if there is a bilinear map $[\cdot, \cdot] : L \times L \to L$ and a skew-symmetric bilinear form $\omega : L \times L \to \mathbb{F}$ such that

 $(1) \ [x,y] = -[y,x],$

(2) $[[x,y],z] + [[y,z],x] + [[z,x],y] = \omega(x,y)z + \omega(y,z)x + \omega(z,x)y,$

hold for any $x, y, z \in L$, denote by L_{ω} . The notation is given by Nurowski in [17], and there are a lot of studies in this field such as [7–9, 20, 21]. Clearly ω -Lie algebras include Lie algebras as a subclass.

It is well-known that left-symmetric algebras are defined by the representation of Lie algebras. A natural question is to define ω -left-symmetric algebras by the representation of ω -Lie algebras, which is given in [19] as follows. Let V_{ω} be a vector space over \mathbb{F} with a bilinear map $(x, y) \mapsto xy$. If there is a bilinear map $\omega : V_{\omega} \times V_{\omega} \to \mathbb{F}$ such that

$$(xy)z - x(yz) - (yx)z + y(xz) = \omega(x,y)z, \ \forall x, y, z \in V_{\omega},$$

then V_{ω} is called an ω -left-symmetric algebra. Left-symmetric algebras (or pre-Lie algebras, quasi-associative algebras, Vinberg algebras and so on) are ω -left-symmetric algebras with $\omega = 0$, which are first introduced by A. Cayley in 1896 ([5]). They appear in many fields in mathematics and mathematical physics, for more details see [2–4, 6, 10–16, 18] and so on. Moreover V_{ω} is an

O2023Korean Mathematical Society

Received May 28, 2022; Revised November 18, 2022; Accepted December 15, 2022.

²⁰²⁰ Mathematics Subject Classification. Primary 17A30, 17B60.

Key words and phrases. ω -Lie algebra, ω -left-symmetric algebra, ω -isomorphism, isomorphism.

This work was partially supported by NNSF of China (11931009 and 12131012) and Guangdong Basic and Applied Basic Research Foundation (2023A1515010001).

 ω -Lie algebra under the commutator [x, y] = xy - yx, which is denoted by $(V_{\omega}, [\cdot, \cdot]).$

The classification of left-symmetric algebras in dimension 3 is given by Bai in [1]. This paper is to classify ω -left-symmetric algebras with $\omega \neq 0$ in dimension 3 based on the classification of ω -Lie algebras given by Nurowski in [17].

The paper is organized as follows. In Section 3, we recall some notations and results on ω -Lie algebras. In particular, we list the classification of ω -Lie algebras in dimension 3 given by Nurowski. Here we point out that there are two ω -Lie algebras in Nurowski's list which are ω -isomorphic. In Section 4, we obtain ω -left-symmetric algebras in dimension 3 based on the classification of ω -Lie algebras given by Nurowski, i.e., Theorem 3.3. In Section 5, we compute the automorphisms of ω -left-symmetric algebras given in Theorem 3.3, and then give the classification up to an ω -isomorphism.

2. ω -Lie algebras

Definition 2.1 ([17]). Let L be a vector space over \mathbb{F} . If there is a bilinear map $[\cdot, \cdot] : L \times L \to L$ and a skew-symmetric bilinear form $\omega : L \times L \to \mathbb{F}$ such that

(1) [x, y] = -[y, x],

(2) $[[x,y],z] + [[y,z],x] + [[z,x],y] = \omega(x,y)z + \omega(y,z)x + \omega(z,x)y,$

hold for any $x, y, z \in L$, then L is called an ω -Lie algebra, denote by L_{ω} . The second identity is called the ω -Jacobi identity, and L_{ω} is called simple if L_{ω} has no non-trivial ideal.

Clearly Lie algebras are ω -Lie algebras with $\omega = 0$. Let L_{ω} be an ω -Lie algebra in dimension 2 with $\omega \neq 0$. Then there exists a basis $\{e_1, e_2\}$ of L_{ω} such that

(1) $[e_1, e_2] = 0$, $\omega(e_1, e_2) = a$ for some $a \neq 0$, or (2) $[e_1, e_2] = e_2$, $\omega(e_1, e_2) = a$ for some $a \neq 0$.

Definition 2.2. Let L_{ω} and L_{Ω} be ω -Lie algebras over \mathbb{F} . If there is a linear isomorphism $\rho: L_{\omega} \to L_{\Omega}$ such that

$$\rho([x,y]) = [\rho(x), \rho(y)], \ \forall x, y \in L_{\omega},$$

then ρ is called an isomorphism from L_{ω} to L_{Ω} . Furthermore, if $\omega(x,y) =$ $\Omega(\rho(x), \rho(y))$, then ρ is called an ω -isomorphism.

Denote by $\operatorname{Isom}(L_{\omega}, L_{\Omega})$ and $\operatorname{Isom}_{\omega,\Omega}(L_{\omega}, L_{\Omega})$ the sets of isomorphisms and ω -isomorphisms from L_{ω} to L_{Ω} , respectively. Clearly

$$\operatorname{Isom}_{\omega,\Omega}(\mathcal{L}_{\omega},\mathcal{L}_{\Omega}) \subseteq \operatorname{Isom}(\mathcal{L}_{\omega},\mathcal{L}_{\Omega}).$$

Set $\operatorname{Aut}(L_{\omega}) = \operatorname{Isom}(L_{\omega}, L_{\omega})$ and $\operatorname{Aut}_{\omega}(L_{\omega}) = \operatorname{Isom}_{\omega,\omega}(L_{\omega}, L_{\omega})$.

Example 2.3. Let L_{ω} be an ω -Lie algebra in dimension 2 with a basis $\{e_1, e_2\}$ satisfying

$$[e_1, e_2] = e_1, \ \omega(e_1, e_2) = 1.$$

It is easy to see that $\operatorname{Aut}(L_{\omega}) = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ for $a \neq 0$. Furthermore, if $f \in \operatorname{Aut}_{\omega}(L_{\omega})$, then

$$a = \omega(f(e_1), f(e_2)) = \omega(e_1, e_2) = 1$$

That is, $\operatorname{Aut}_{\omega}(L_{\omega}) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$. For this case,

$$\operatorname{Aut}_{\omega}(L_{\omega}) \subset \operatorname{Aut}(L_{\omega}).$$

Proposition 2.4. Let L_{ω} and L_{Ω} be ω -Lie algebras with dim $L_{\omega} = \dim L_{\Omega} \geq 3$. Then

$$\operatorname{Isom}(L_{\omega}, L_{\Omega}) = \operatorname{Isom}_{\omega, \Omega}(L_{\omega}, L_{\Omega}).$$

Proof. It is enough to prove $\operatorname{Isom}(L_{\omega}, L_{\Omega}) \subseteq \operatorname{Isom}_{\omega,\Omega}(L_{\omega}, L_{\Omega})$. For any $\rho \in \operatorname{Isom}(L_{\omega}, L_{\Omega})$,

$$\begin{split} &\omega(x,y)\rho(z) + \omega(y,z)\rho(x) + \omega(z,x)\rho(y) \\ &= \rho(\omega(x,y)z + \omega(y,z)x + \omega(z,x)y) \\ &= \rho([[x,y],z] + [[y,z],x] + [[z,x],y]) \\ &= [[\rho(x),\rho(y)],\rho(z)] + [[\rho(y),\rho(z)],\rho(x)] + [[\rho(z),\rho(x)],\rho(y)] \\ &= \Omega(\rho(x),\rho(y))\rho(z) + \Omega(\rho(y),\rho(z))\rho(x) + \Omega(\rho(z),\rho(x))\rho(y) \end{split}$$

by the ω -Jacobi identity and the definition of an isomorphism. For any $x, y \in L_{\omega}$, there exists $z \in L_{\omega}$ which does not belong to the subspace generated by x and y. It means that $\rho(z)$ does not belong to the subspace in L_{Ω} generated by $\rho(x)$ and $\rho(y)$. Hence the above identity shows that $\Omega(\rho(x), \rho(y)) = \omega(x, y)$, i.e., $\rho \in \operatorname{Isom}_{\omega,\Omega}(L_{\omega}, L_{\Omega})$.

Theorem 2.5 ([17]). Let L_{ω} be an ω -Lie algebra of dimension 3 over \mathbb{R} with $\omega \neq 0$. Then L_{ω} is one of the following types. That is, there exists a basis $\{e_1, e_2, e_3\}$ of L_{ω} such that

- (1) $[e_1, e_2] = e_2$, $[e_2, e_3] = e_1$, $[e_3, e_1] = -e_3$, $\omega(e_1, e_2) = 0$, $\omega(e_2, e_3) = 2$ and $\omega(e_3, e_1) = 0$. It is type IV_T .
- (2) $[e_1, e_2] = -e_1, [e_2, e_3] = e_1 + e_3, [e_3, e_1] = -e_2, \ \omega(e_1, e_2) = 0, \ \omega(e_2, e_3) = 0 \ and \ \omega(e_3, e_1) = -2.$ It is type VI_S.
- (3) $[e_1, e_2] = e_2, [e_2, e_3] = e_1, [e_3, e_1] = -e_2 e_3, \ \omega(e_1, e_2) = 0, \ \omega(e_2, e_3) = 2 \ and \ \omega(e_3, e_1) = 0.$ It is type VI_T .
- (4) $[e_1, e_2] = e_2 e_1, [e_2, e_3] = e_1 + e_3, [e_3, e_1] = -e_2 e_3, \ \omega(e_1, e_2) = 0, \ \omega(e_2, e_3) = 2 \text{ and } \omega(e_3, e_1) = -2.$ It is type VI_N .
- (5) $[e_1, e_2] = e_2, [e_2, e_3] = e_1, [e_3, e_1] = e_2 e_3, \ \omega(e_1, e_2) = 0, \ \omega(e_2, e_3) = 2$ and $\omega(e_3, e_1) = 0$. It is type VII_T.
- (6) $[e_1, e_2] = -e_3, [e_2, e_3] = e_1 ae_2, [e_3, e_1] = e_2 + ae_1, \ \omega(e_1, e_2) = -2a, \ \omega(e_2, e_3) = 0 \text{ and } \omega(e_3, e_1) = 0.$ It is type VIII_a.
- (7) $[e_1, e_2] = ae_2 e_3, [e_2, e_3] = e_1, [e_3, e_1] = e_2 ae_3, \omega(e_1, e_2) = 0, \omega(e_2, e_3) = 2a \text{ and } \omega(e_3, e_1) = 0.$ It is type $VIII_{Ta}$.
- (8) $[e_1, e_2] = ae_2 e_3, [e_2, e_3] = e_1 ae_2, [e_3, e_1] = ae_1 + e_2 ae_3, \omega(e_1, e_2) = -2a, \omega(e_2, e_3) = 2a \text{ and } \omega(e_3, e_1) = 0.$ It is $VIII_{Na}$.

(9) $[e_1, e_2] = e_3$, $[e_2, e_3] = e_1 - ae_2$, $[e_3, e_1] = e_2 + ae_1$, $\omega(e_1, e_2) = 2a$, $\omega(e_2, e_3) = 0$ and $\omega(e_3, e_1) = 0$. It is type IX_a .

Here a > 0 is a real number.

Remark 2.6. In the above classification, two ω -Lie algebras of types V_IS and V_IT are isomorphic, and there is no isomorphism for the other types of ω -Lie algebras. Assume that L_{ω} and L_{Ω} are ω -Lie algebras of types VI_S and VI_T , respectively. Let $\{e_1, e_2, e_3\}$ be the basis of L_{ω} satisfying

$$\begin{split} & [e_1,e_2]=-e_1, \ [e_2,e_3]=e_1+e_3, \ [e_3,e_1]=-e_2, \\ & \omega(e_1,e_2)=\omega(e_2,e_3)=0, \ \omega(e_3,e_1)=-2 \end{split}$$

and let $\{E_1, E_2, E_3\}$ be the basis of L_{Ω} satisfying

$$\begin{split} [E_1,E_2] &= E_2, \ [E_2,E_3] = E_1, \ [E_3,E_1] = -E_2 - E_3, \\ \Omega(E_1,E_2) &= \Omega(E_3,E_1) = 0, \ \Omega(E_2,E_3) = 2. \end{split}$$

Define a linear map f from L_{ω} to L_{Ω} by

$$f(e_1) = E_2, f(e_2) = E_1, f(e_3) = E_3.$$

It is easy to see that $f \in \text{Isom}(L_{\omega}, L_{\Omega}) = \text{Isom}_{\omega,\Omega}(L_{\omega}, L_{\Omega}).$

Definition 2.7 ([21]). Let L_{ω} be an ω -Lie algebra and M a vector space. If there is a linear map $\psi: L_{\omega} \to \operatorname{End}(M)$ such that

$$\psi([x,y])m = \psi(x)\psi(y)m - \psi(y)\psi(x)m + \omega(x,y)m, \ \forall x,y \in L_{\omega}, m \in M,$$

then (ψ, M) or ψ is called a representation of L_{ω} .

3. ω -left-symmetric algebras

Definition 3.1 ([19]). Let V_{ω} be a vector space over \mathbb{F} with a bilinear map $(x, y) \mapsto xy$. If there is a bilinear map $\omega : V_{\omega} \times V_{\omega} \to \mathbb{F}$ such that

$$(3.1) \qquad (xy)z - x(yz) - (yx)z + y(xz) = \omega(x,y)z, \ \forall x, y, z \in V_{\omega}.$$

Then V_{ω} is called an ω -left-symmetric algebra.

For an ω -left-symmetric algebra V_{ω} , it is easy to check that

- (1) ω is skew-symmetric, and clearly V_{ω} is a left-symmetric algebra if $\omega = 0$.
- (2) V_{ω} is an ω -Lie algebra under the commutator [x, y] = xy yx. Denote it by $(V_{\omega}, [\cdot, \cdot])$.
- (3) Define a linear map $l: V_{\omega} \to \operatorname{End}(V_{\omega})$ by $l(x)(y) = l_x(y) = xy$. Then l is a representation of the ω -Lie algebra $(V_{\omega}, [\cdot, \cdot])$.

That is, an ω -left-symmetric algebra can be considered as an extension of a left symmetric algebra, and the relationship between ω -left-symmetric algebra and ω -Lie algebra is similar to that between Lie algebra and left-symmetric algebra. The following is to classify ω -left-symmetric algebras in low dimensions which are not left-symmetric algebras, i.e., $\omega \neq 0$.

Theorem 3.2 ([19]). Let V_{ω} be an ω -left-symmetric algebra in dimension 2 with $\omega \neq 0$. Then there is a basis $\{e_1, e_2\}$ of V_{ω} such that $\omega(e_1, e_2) = 1$, and

(1)
$$e_1e_1 = e_1$$
, $e_1e_2 = e_2$, $e_2e_1 = -e_1 + e_2$, $e_2e_2 = ae_1 + be_2$, or
(2) $e_1e_1 = e_1 + ae_2$, $e_1e_2 = e_2$, $e_2e_1 = -e_1 + e_2$, $e_2e_2 = -2e_2$.

 $(2) e_1 e_1 = e_1 + ae_2, e_1 e_2 = e_2, e_2 e_1 = e_1 + e_2, e_2 e_2 = 2e_2.$

We will classify ω -left-symmetric algebras of dimension 3 over \mathbb{R} based on the classification of ω -Lie algebras given by Nurowski. Assume that V_{ω} is an ω -left-symmetric algebra of dimension 3 with the product $(x, y) \mapsto xy$. Then V_{ω} is an ω -Lie algebra of dimension 3 under the commutator [x, y] = xy - yx. Suppose that there is a basis in V_{ω} such that

$$\begin{split} & [e_1, e_2] = k^i e_i, \ [e_2, e_3] = l^i e_i, \ [e_3, e_1] = p^i e_i. \\ & \omega(e_1, e_2) = c_{12}, \ \omega(e_2, e_3) = c_{23}, \ \omega(e_3, e_1) = c_{31}. \end{split}$$

Then the product of the ω -left-symmetric algebra is equivalent to that, for any $x \in V_{\omega}$,

$$\begin{aligned} &(e_1e_2)x - e_1(e_2x) - (e_2e_1)x + e_2(e_1x) = c_{12}x, \\ &(e_2e_3)x - e_2(e_3x) - (e_3e_2)x + e_3(e_2x) = c_{23}x, \\ &(e_3e_1)x - e_3(e_1x) - (e_1e_3)x + e_1(e_3x) = c_{31}x. \end{aligned}$$

Let l_x denote the left multiplication on V_{ω} , i.e., $l_x(y) = xy$, and denote by A, B, C the matrices of $l_{e_1}, l_{e_2}, l_{e_3}$ under the basis $\{e_1, e_2, e_3\}$, respectively, i.e.,

$$l_{e_1}(e_1, e_2, e_3) = (e_1, e_2, e_3)A,$$

$$l_{e_2}(e_1, e_2, e_3) = (e_1, e_2, e_3)B,$$

$$l_{e_3}(e_1, e_2, e_3) = (e_1, e_2, e_3)C.$$

Then the above equations are equivalent to

(3.2)
$$\begin{cases} k^{i}l_{e_{i}} - AB + BA = c_{12}, \\ l^{i}l_{e_{i}} - BC + CB = c_{23}, \\ p^{i}l_{e_{i}} - CA + AC = c_{31}. \end{cases}$$

3.1. $(V_{\omega}, [\cdot, \cdot])$ is type IV_T as an ω -Lie algebra

Then there is a basis $\{e_1, e_2, e_3\}$ such that

$$\begin{split} & [e_1, e_2] = e_2, \ [e_2, e_3] = e_1, \ [e_3, e_1] = -e_3, \\ & \omega(e_1, e_2) = 0, \ \omega(e_2, e_3) = 2, \ \omega(e_3, e_1) = 0. \end{split}$$

It is easy to see that $(V_{\omega}, [\cdot, \cdot])$ is simple as an ω -Lie algebra. Moreover, we have

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, B = \begin{pmatrix} a_{12} & b_{12} & b_{13} \\ a_{22} - 1 & b_{22} & b_{23} \\ a_{32} & b_{32} & b_{33} \end{pmatrix}, C = \begin{pmatrix} a_{13} & b_{13} - 1 & c_{13} \\ a_{23} & b_{23} & c_{23} \\ a_{33} - 1 & b_{33} & c_{33} \end{pmatrix}.$$

By (3.2), we have

AB - BA - B = 0, BC - CB - A + 2I = 0, AC - CA - C = 0.

By the second one, we have A = [B, C] + 2I. Putting into the other two, we have

B = [[B, C], B], C = [[B, C], C].

It means that $\{B, C, [B, C]\}$ generates a Lie subalgebra of $\mathbb{R}^{3 \times 3}$. Then

$$[[B, C], [B, C]] + [[C, [B, C]], B] + [[[B, C], B], C] = 0.$$

It follows that 2[B, C] = 0. Then B = C = [B, C] = 0, which is impossible.

That is, there is no ω -left-symmetric algebra V_{ω} such that $(V_{\omega}, [\cdot, \cdot])$ is type IV_T .

3.2. $(V_{\omega}, [\cdot, \cdot])$ is type VI_T as an ω -Lie algebra

Then there is a basis $\{e_1, e_2, e_3\}$ such that

$$\begin{split} & [e_1,e_2]=e_2, \ [e_2,e_3]=e_1, \ [e_3,e_1]=-e_2-e_3, \\ & \omega(e_1,e_2)=0, \ \omega(e_2,e_3)=2, \ \omega(e_3,e_1)=0. \end{split}$$

Clearly, $(V_{\omega}, [\cdot, \cdot])$ is simple. Moreover, we have

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, B = \begin{pmatrix} a_{12} & b_{12} & b_{13} \\ a_{22} - 1 & b_{22} & b_{23} \\ a_{32} & b_{32} & b_{33} \end{pmatrix}, C = \begin{pmatrix} a_{13} & b_{13} - 1 & c_{13} \\ a_{23} - 1 & b_{23} & c_{23} \\ a_{33} - 1 & b_{33} & c_{33} \end{pmatrix}.$$

By (3.2), we have

$$AB - BA - B = 0, BC - CB - A + 2I = 0, AC - CA - C - B = 0$$

By the second one, we have A = [B, C] + 2I. Putting into the other two, we have

$$B = [[B, C], B], B + C = [[B, C], C].$$

B = [[B, C], B], B + C = [[B, C], C].That is, $\{B, C, [B, C]\}$ generates a Lie subalgebra of $\mathbb{R}^{3 \times 3}$. Then

$$[B, C], [B, C]] + [[C, [B, C]], B] + [[[B, C], B], C] = 0.$$

It follows that [B, C] = 0. Then B = C = [B, C] = 0, which is impossible.

That is, there is no ω -left-symmetric algebra V_{ω} such that $(V_{\omega}, [\cdot, \cdot])$ is type VI_T .

3.3. $(V_{\omega}, [\cdot, \cdot])$ is type VI_N as an ω -Lie algebra

Then there is a basis $\{e_1, e_2, e_3\}$ such that

$$[e_1, e_2] = e_2 - e_1, \ [e_2, e_3] = e_1 + e_3, \ [e_3, e_1] = -e_3 - e_2,$$

$$\omega(e_1, e_2) = 0, \ \omega(e_2, e_3) = 2, \ \omega(e_3, e_1) = -2.$$

Clearly, $(V_{\omega}, [\cdot, \cdot])$ is not simple. Moreover, we have

$$A = \begin{pmatrix} a_{11} & a_{12} & c_{11} \\ a_{21} & a_{22} & c_{21} + 1 \\ a_{31} & a_{32} & c_{31} + 1 \end{pmatrix}, B = \begin{pmatrix} a_{12} + 1 & b_{12} & c_{12} + 1 \\ a_{22} - 1 & b_{22} & c_{22} \\ a_{32} & b_{32} & c_{32} + 1 \end{pmatrix}, C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}.$$

By (3.2), we have

B - A - AB + BA = 0, A + C - BC + CB = 2I, -B - C - CA + AC = -2I. That is,

$$B - A = [A, B], A + C = 2I + [B, C], B + C = 2I + [A, C].$$

Consider the dimension k of the Lie algebra L generated by $\{A, B, C, I\}$. First we know $k \neq 1$.

If k = 4, then $\{A, B, C, I\}$ is a basis of L. Moreover, under this basis, we have

$$\mathrm{ad}_A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 0 \end{pmatrix}, \ \mathrm{ad}_B = \begin{pmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 0 \end{pmatrix}.$$

It follows that

$$\mathrm{ad}_{B-A} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \ \mathrm{ad}_{[A,B]} = \begin{pmatrix} 1 & 1 & -1 & 0 \\ -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

It contradicts to B - A = [A, B].

If k = 3, we divide into four cases:

(1) $\{A, B, C\}$ is a basis of L. Let 2I = xA + yB + zC. Then

$$B - A = [A, B], \quad (1 - x)A - yB + (1 - z)C = [B, C],$$
$$-xA + (1 - y)B + (1 - z)C = [A, C].$$

It means that

$$\mathrm{ad}_A = \begin{pmatrix} 0 & -1 & -x \\ 0 & 1 & 1-y \\ 0 & 0 & 1-z \end{pmatrix}, \ \mathrm{ad}_B = \begin{pmatrix} 1 & 0 & 1-x \\ -1 & 0 & y \\ 0 & 0 & 1-z \end{pmatrix}, \ \mathrm{ad}_C = \begin{pmatrix} x & x-1 & 0 \\ y-1 & y & 0 \\ z-1 & z-1 & 0 \end{pmatrix}.$$

Since $2I \in L$ and $ad_{2I} = 0$, we have $xad_A + yad_B + zad_C = 0$, i.e.,

$$0 = \begin{pmatrix} y + xz & z(x-1) - x & -y(x-1) - x^2 \\ z(y-1) - y & x + yz & -x(y-1) - y^2 \\ z(z-1) & z(z-1) & -(x+y)(z-1) \end{pmatrix}.$$

By z(z-1) = 0, we have z = 0 or z = 1. If z = 1, then $z(y-1) - y = -1 \neq 0$, which is a contradiction. Thus z = 0. Thus x = y = 0. It follows that 2I = xA + yB + cZ = 0, which is also a contradiction.

(2) $\{A, B, I\}$ is a basis of L. Let C = xA + yB + zI. Then we have

$$B - A = [A, B], \quad (1 + x)A + yB + (z - 2)I = -x[A, B],$$

$$xA + (1 + y)B + (z - 2)I = y[A, B].$$

Putting the first one into the second one, we have A + (x + y)B + (z - 2)I = 0, which is impossible.

Z. CHEN AND Y. WU

(3)
$$\{A, C, I\}$$
 is a basis of L. Let $B = xA + yC + zI$. Then we have

$$(x-1)A + yC + zI = y[A, C], \quad A + C - 2I = x[A, C],$$

 $xA + (1+y)C + (z-2)I = [A, C].$

Putting the third one into the first and second one, we have y = z = 0 and x = 1. That is, A = B and A + C = 2I, which is impossible.

(4) $\{B, C, I\}$ is a basis of L. Let A = xB + yC + zI. Then we have

$$(1-x)B - yC - zI = -y[B, C],$$

 $xB + (1+y)C + (z-2)I = [B, C], \quad B + C - 2I = x[B, C].$

Putting the second one into the first and third one, we have y = z = 0 and x = 1. That is, A = B and B + C = 2I, which is impossible.

If k = 2, we will discuss the following three cases:

(1) If $\{A, I\}$, or $\{B, I\}$, or $\{C, I\}$ is a basis of L, then [A, B] = [A, C] = [B, C] = 0. Then A = B and A + C = 2I. That is,

$$A = \begin{pmatrix} a_1 & a_1 - 1 & 2 - a_1 \\ a_2 & a_2 + 1 & 1 - a_2 \\ a_3 & a_3 & 1 - a_3 \end{pmatrix}, \ B = \begin{pmatrix} a_1 & a_1 - 1 & 2 - a_1 \\ a_2 & a_2 + 1 & 1 - a_2 \\ a_3 & a_3 & 1 - a_3 \end{pmatrix}, \ C = \begin{pmatrix} 2 - a_1 & 1 - a_1 & a_1 - 2 \\ -a_2 & 1 - a_2 & -1 + a_2 \\ -a_3 & -a_3 & 1 + a_3 \end{pmatrix}.$$

(2) If $\{A, B\}$ is a basis of L, then we have that A - B = [B - A, C] = [[A, B], C] = 0, i.e., A = B, which is impossible.

(3) If $\{A, C\}$ or $\{B, C\}$ is a basis of L, we have the same solution as (1). That is, if V_{ω} is an ω -left-symmetric algebra such that $(V_{\omega}, [\cdot, \cdot])$ is type VI_N , then there exists a basis $\{e_1, e_2, e_3\}$ of V_{ω} such that

$$\begin{cases} e_1e_1 = e_2e_1 = a_1e_1 + a_2e_2 + a_3e_3 = 2e_1 - e_3e_1, \\ e_1e_2 = e_2e_2 = (a_1 - 1)e_1 + (a_2 + 1)e_2 + a_3e_3 = 2e_2 - e_3e_2, \\ e_1e_3 = e_2e_3 = (2 - a_1)e_1 + (1 - a_2)e_2 + (1 - a_3)e_3 = 2e_3 - e_3e_3, \\ \omega(e_1, e_2) = 0, \ \omega(e_2, e_3) = 2, \ \omega(e_3, e_1) = -2. \end{cases}$$

3.4. $(V_{\omega}, [\cdot, \cdot])$ is type VII_T as an ω -Lie algebra

Then there is a basis $\{e_1, e_2, e_3\}$ such that

$$\begin{split} & [e_1,e_2]=e_2, \; [e_2,e_3]=e_1, \; [e_3,e_1]=e_2-e_3, \\ & \omega(e_1,e_2)=0, \; \omega(e_2,e_3)=2, \; \omega(e_3,e_1)=0. \end{split}$$

Clearly, $(V_{\omega}, [\cdot, \cdot])$ is simple. Moreover we have

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, B = \begin{pmatrix} a_{12} & b_{12} & b_{13} \\ a_{22} - 1 & b_{22} & b_{23} \\ a_{32} & b_{32} & b_{33} \end{pmatrix}, C = \begin{pmatrix} a_{13} & b_{13} - 1 & c_{13} \\ a_{23} + 1 & b_{23} & c_{23} \\ a_{33} - 1 & b_{33} & c_{33} \end{pmatrix}.$$

By (3.2), we have

$$B - AB + BA = 0, \ A - BC + CB = 2I, \ B - C + AC - CA = 0.$$

It means that

$$B = [[B, C], B], \ -B + C = [[B, C], C]$$

That is, $\{B,C,[B,C]\}$ generates a Lie subalgebra of $\mathbb{R}^{3\times 3}.$ Then

$$[B,C], [B,C]] + [[C, [B,C]], B] + [[[B,C], B], C] = 0.$$

It gives 2[B, C] = 0, furthermore B = C = [B, C] = 0, which is impossible. That is, there is no ω -left-symmetric algebra V_{ω} such that $(V_{\omega}, [\cdot, \cdot])$ is type VII_T .

3.5. $(V_{\omega}, [\cdot, \cdot])$ is type $VIII_a$ as an ω -Lie algebra

Then there is a basis $\{e_1, e_2, e_3\}$ such that

$$\begin{split} & [e_1, e_2] = -e_3, \ [e_2, e_3] = e_1 - ae_2, \ [e_3, e_1] = ae_1 + e_2, \\ & \omega(e_1, e_2) = -2a, \ \omega(e_2, e_3) = 0, \ \omega(e_3, e_1) = 0, \ a > 0. \end{split}$$

Clearly, $(V_{\omega}, [\cdot, \cdot])$ is simple. Moreover we have

$$A = \begin{pmatrix} a_{11} & a_{12} & c_{11} - a \\ a_{21} & a_{22} & c_{21} - 1 \\ a_{31} & a_{32} & c_{31} \end{pmatrix}, \ B = \begin{pmatrix} a_{12} & b_{12} & c_{12} + 1 \\ a_{22} & b_{22} & c_{22} - a \\ a_{32} + 1 & b_{32} & c_{32} \end{pmatrix}, \ C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}.$$

By (3.2), we have

$$-C - AB + BA = -2aI, \quad A - aB - BC + CB = 0,$$

$$aA + B + AC - CA = 0.$$

Then we have

$$-A + aB = [[B, A], B], \ aA + B = [[B, A], A].$$

That is, $\{B, A, [B, A]\}$ generates a Lie subalgebra of $\mathbb{R}^{3 \times 3}$. Then we know

[[B, A], [B, A]] + [[A, [B, A]], B] + [[[B, A], B], A] = 0.

It follows that 2a[B, A] = 0, so B = A = [B, A] = 0, which is impossible.

That is, there is no ω -left-symmetric algebra V_{ω} such that $(V_{\omega}, [\cdot, \cdot])$ is type $VIII_a$.

3.6. $(V_{\omega}, [\cdot, \cdot])$ is type $VIII_{Ta}$ as an ω -Lie algebra

Then there is a basis $\{e_1, e_2, e_3\}$ such that

$$\begin{split} & [e_1, e_2] = ae_2 - e_3, \ [e_2, e_3] = e_1, \ [e_3, e_1] = e_2 - ae_3, \\ & \omega(e_1, e_2) = 0, \ \omega(e_2, e_3) = 2a, \ \omega(e_3, e_1) = 0, \ a > 0. \end{split}$$

Clearly, $(V_{\omega}, [\cdot, \cdot])$ is simple for $a \neq 1$. Moreover we have

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, B = \begin{pmatrix} a_{12} & b_{12} & b_{13} \\ a_{22} - a & b_{22} & b_{23} \\ a_{32} + 1 & b_{32} & b_{33} \end{pmatrix}, C = \begin{pmatrix} a_{13} & b_{13} - 1 & c_{13} \\ a_{23} + 1 & b_{23} & c_{23} \\ a_{33} - a & b_{33} & c_{33} \end{pmatrix}.$$

By (3.2), we have

$$aB - C - AB + BA = 0, \ A - BC + CB = 2aI, \ B - aC + AC - CA = 0.$$

It means that

$$aB - C = [[B, C], B], -B + aC = [[B, C], C]$$

That is, $\{B, C, [B, C]\}$ generates a Lie subalgebra of $\mathbb{R}^{3 \times 3}$. Then we know

[[B, C], [B, C]] + [[C, [B, C]], B] + [[[B, C], B], C] = 0.

It gives 2[B, C] = 0, then B = C. Since it is impossible for B = C = 0, we have A = 2I and a = 1. Then we have

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, B = C = \begin{pmatrix} 0 & a_1 & a_1 + 1 \\ 1 & a_2 & a_2 \\ 1 & a_3 & a_3 \end{pmatrix}.$$

That is, if V_{ω} is an ω -left-symmetric algebra such that $(V_{\omega}, [\cdot, \cdot])$ is type $VIII_{Ta}$, then a = 1 and there exists a basis $\{e_1, e_2, e_3\}$ of V_{ω} such that

 $\begin{cases} e_1e_1 = 2e_1, \ e_1e_2 = 2e_2, \ e_1e_3 = 2e_3, \\ e_2e_1 = e_3e_1 = e_2 + e_3, \\ e_2e_2 = e_3e_2 = a_1e_1 + a_2e_2 + a_3e_3, \\ e_2e_3 = e_3e_3 = (a_1 + 1)e_1 + a_2e_2 + a_3e_3, \\ \omega(e_1, e_2) = 0, \ \omega(e_2, e_3) = 2, \ \omega(e_3, e_1) = 0. \end{cases}$

3.7. $(V_{\omega}, [\cdot, \cdot])$ is type $VIII_{Na}$ as an ω -Lie algebra

Then there is a basis $\{e_1, e_2, e_3\}$ such that

$$\begin{split} & [e_1, e_2] = ae_2 - e_3, \ [e_2, e_3] = e_1 - ae_2, \ [e_3, e_1] = ae_1 + e_2 - ae_3, \\ & \omega(e_1, e_2) = -2a, \ \omega(e_2, e_3) = 2a, \ \omega(e_3, e_1) = 0, \ a > 0. \end{split}$$

Clearly $(V_{\omega}, [\cdot, \cdot])$ is simple. Moreover we have

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, B = \begin{pmatrix} a_{12} & b_{12} & b_{13} \\ a_{22} - a & b_{22} & b_{23} \\ a_{32} + 1 & b_{32} & b_{33} \end{pmatrix}, C = \begin{pmatrix} a_{13} + a & b_{13} - 1 & c_{13} \\ a_{23} + 1 & b_{23} + a & c_{23} \\ a_{33} - a & b_{33} & c_{33} \end{pmatrix}.$$

By (3.2), we have

$$aB - C - AB + BA = -2aI, \quad A - aB - BC + CB = 2aI,$$

 $aA + B - aC + AC - CA = 0.$

That is,

$$aB - C + 2aI = [A, B], \ A - aB - 2aI = [B, C], \ -aA - B + aC = [A, C].$$

Let L be the Lie subalgebra of $\mathbb{R}^{3\times 3}$ generated by $\{A,B,C,I\}$ with the dimension k.

Case 1: k = 4. Then we have

$$\operatorname{ad}_{A} = \begin{pmatrix} 0 & 0 & -a & 0 \\ 0 & a & -1 & 0 \\ 0 & -1 & a & 0 \\ 0 & 2a & 0 & 0 \end{pmatrix}, \ \operatorname{ad}_{B} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ -a & 0 & -a & 0 \\ 1 & 0 & 0 & 0 \\ -2a & 0 & -2a & 0 \end{pmatrix}, \ \operatorname{ad}_{C} = \begin{pmatrix} a & -1 & 0 & 0 \\ 1 & a & 0 & 0 \\ -a & 0 & 0 & 0 \\ 0 & 2a & 0 & 0 \end{pmatrix}.$$

By $ad_{[A,B]} = ad_{aB-C+2aI}$, we have a = 0, which is impossible.

Case 2: k = 3. We will discuss the following cases:

(1) If $\{A, B, C\}$ is a basis of L, let 2aI = xA + yB + zC, then we have

$$xA + (y+a)B + (z-1)C = [A, B],$$

$$(1-x)A - (y+a)B - zC = [B,C], \quad -aA - B + aC = [A,C].$$

Under this basis, we have

$$\mathrm{ad}_{A} = \begin{pmatrix} 0 & x & -a \\ 0 & y+a & -1 \\ 0 & z-1 & a \end{pmatrix}, \ \mathrm{ad}_{B} = \begin{pmatrix} -x & 0 & 1-x \\ -y-a & 0 & -y-a \\ 1-z & 0 & -z \end{pmatrix}, \ \mathrm{ad}_{C} = \begin{pmatrix} a & x-1 & 0 \\ 1 & y+a & 0 \\ -a & z & 0 \end{pmatrix}.$$

Then by $ad_{-aA-B+aC} = ad_{[A,C]}$, we have

$$\begin{pmatrix} a^2 + x & -a & a^2 + x - 1 \\ 2a + y & 0 & 2a + y \\ -a^2 + z - 1 & a & -a^2 + z \end{pmatrix} = \begin{pmatrix} a^2 + x & a + y - ax - az & a^2 + x - 1 \\ 2a + y & -x - z & 2a + y \\ -a^2 + z - 1 & ax - y - a + az & -a^2 + z \end{pmatrix}.$$

It follows that x = -z and y = -2a. Then 2aI = x(A - C) - 2aB, so $ad_{x(A-C)-2aB} = 0$. That is,

$$\begin{pmatrix} ax & x & ax - 2a \\ -x - 2a^2 & 0 & -x - 2a^2 \\ -2a - ax & -x & -ax \end{pmatrix} = 0,$$

it follows that x = 0 and a = 0, which is impossible.

(2) If $\{A, B, 2aI\}$ is a basis of L, assume that $\{A, B, C\}$ is linear dependent by (1), then C = xA + yB. It follows that

$$-xA + (-y+a)B + 2aI = [A, B], \quad A - aB - 2aI = -x[A, B],$$
$$(ax - a)A - (ay - 1)B = y[A, B].$$

It gives y = 0, which is impossible. Similarly, we can show that $\{A, C, 2aI\}$ and $\{C, B, 2aI\}$ are not the basis of L.

Case 3: k = 2. We discuss the following cases.

(1) $\{A, 2aI\}$, or $\{B, 2aI\}$, or $\{C, 2aI\}$ is basis of L. For any case, then we have

$$aB - C + 2aI = 0, \ A - aB - 2aI = 0, \ -aA - B + aC = 0.$$

It gives A = C and B = 0, which is impossible.

(2) $\{A, B\}$, or $\{A, C\}$, $\{C, B\}$ is a basis of L. For the first case, let C = xA + yB and 2aI = pA + qB. Then we have

$$\begin{cases} 1-p = x(x-p), & \text{(i)} \\ a+q = x(q+a-y), & \text{(ii)} \end{cases} \text{ and } \begin{cases} a(x-1) = y(p-x), & \text{(iii)} \\ ay-1 = y(q+a-y). & \text{(iv)} \end{cases}$$

By (i), we have p = x + 1 or x = 1. If x = 1, then y = 0 by (ii), but (iv) doesn't hold. So p = x + 1, then y = a(x - 1) by (iii). Then

ay - 1 = y(q + a - y) = a(x - 1)(q + a - y) = a(a + q) - a(q + a - y) = ay, which is impossible. Clearly $k \neq 1$. That is, there is no ω -left-symmetric algebra V_{ω} such that $(V_{\omega}, [\cdot, \cdot])$ is type $VIII_{Na}$.

3.8. $(V_{\omega}, [\cdot, \cdot])$ is type IX_a as an ω -Lie algebra

Then there is a basis $\{e_1, e_2, e_3\}$ such that

$$\begin{split} & [e_1,e_2]=e_3, \; [e_2,e_3]=e_1-ae_2, \; [e_3,e_1]=ae_1+e_2, \\ & \omega(e_1,e_2)=2a, \; \omega(e_2,e_3)=0, \; \omega(e_3,e_1)=0, \; a>0. \end{split}$$

Clearly $(V_{\omega}, [\cdot, \cdot])$ is simple. Moreover we have

$$A = \begin{pmatrix} a_{11} & b_{11} & c_{11} - a \\ a_{21} & b_{21} & c_{21} - 1 \\ a_{31} & b_{31} + 1 & c_{31} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} & c_{12} + 1 \\ b_{21} & b_{22} & c_{22} - a \\ b_{31} & b_{32} & c_{32} \end{pmatrix}, C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}.$$

By (3.2), we have

$$C - 2aI - AB + BA = 0, \quad A - aB - BC + CB = 0,$$

 $aA + B + AC - CA = 0.$

It means that

$$A - aB = [B, [A, B]], \ -aA - B = [A, [A, B]].$$

That is, $\{B, A, [A, B]\}$ generates a Lie subalgebra of $\mathbb{R}^{3 \times 3}$. Then we know

[[A,B],[A,B]]+[[B,[A,B]],A]+[[[A,B],A],B]=0.

It gives 2a[A, B] = 0, then [A, B] = 0, C = 2aI and $a^2 + 1 = 0$, which is impossible.

That is, there is no ω -left-symmetric algebra V_{ω} such that $(V_{\omega}, [\cdot, \cdot])$ is type IX_a .

In summary, we have the structure theorem of ω -left-symmetric algebras in dimension 3.

Theorem 3.3. Let V_{ω} be an ω -left-symmetric algebra over \mathbb{R} in dimension 3. Then one of the following cases holds:

- (1) V_{ω} is a left-symmetric algebra.
- (2) $(V_{\omega}, [\cdot, \cdot])$ is type VI_N , and there exists a basis $\{e_1, e_2, e_3\}$ of V_{ω} such that

$$\begin{cases} e_1e_1 = e_2e_1 = a_1e_1 + a_2e_2 + a_3e_3 = 2e_1 - e_3e_1, \\ e_1e_2 = e_2e_2 = (a_1 - 1)e_1 + (a_2 + 1)e_2 + a_3e_3 = 2e_2 - e_3e_2, \\ e_1e_3 = e_2e_3 = (2 - a_1)e_1 + (1 - a_2)e_2 + (1 - a_3)e_3 = 2e_3 - e_3e_3, \\ \omega(e_1, e_2) = 0, \ \omega(e_2, e_3) = 2, \ \omega(e_3, e_1) = -2. \end{cases}$$

(3) $(V_{\omega}, [\cdot, \cdot])$ is type $VIII_{Ta}$ with a = 1, and there exists a basis $\{e_1, e_2, e_3\}$ of V_{ω} such that

$$\begin{cases} e_1e_1 = 2e_1, \ e_1e_2 = 2e_2, \ e_1e_3 = 2e_3, \\ e_2e_1 = e_3e_1 = e_2 + e_3, \\ e_2e_2 = e_3e_2 = a_1e_1 + a_2e_2 + a_3e_3, \\ e_2e_3 = e_3e_3 = (a_1 + 1)e_1 + a_2e_2 + a_3e_3, \\ \omega(e_1, e_2) = 0, \ \omega(e_2, e_3) = 2, \ \omega(e_3, e_1) = 0. \end{cases}$$

4. The isomorphism of ω -left-symmetric algebras

Definition 4.1. Let V_{ω} and V_{Ω} be ω -left-symmetric algebras over \mathbb{F} . If there is a linear isomorphism $\rho: V_{\omega} \to V_{\Omega}$ such that

$$\rho(xy) = \rho(x)\rho(y), \ \forall x, y \in V_{\omega},$$

then ρ is called an isomorphism from V_{ω} to V_{Ω} . Furthermore, if $\omega(x, y) = \Omega(\rho(x), \rho(y))$, then ρ is called an ω -isomorphism.

Denote by $\operatorname{Isom}(V_{\omega}, V_{\Omega})$ and $\operatorname{Isom}_{\omega,\Omega}(V_{\omega}, V_{\Omega})$ the sets of isomorphisms and ω -isomorphisms from V_{ω} to V_{Ω} , respectively. Clearly

$$\operatorname{Isom}_{\omega,\Omega}(V_{\omega}, V_{\Omega}) \subseteq \operatorname{Isom}(V_{\omega}, V_{\Omega}).$$

Proposition 4.2. Let V_{ω} and V_{Ω} be ω -left-symmetric algebras with dim $V_{\omega} = \dim V_{\Omega} \geq 1$. Then

$$\operatorname{Isom}(V_{\omega}, V_{\Omega}) = \operatorname{Isom}_{\omega,\Omega}(V_{\omega}, V_{\Omega}).$$

Proof. It is enough to prove $\operatorname{Isom}(V_{\omega}, V_{\Omega}) \subseteq \operatorname{Isom}_{\omega,\Omega}(V_{\omega}, V_{\Omega})$. For any $\rho \in \operatorname{Isom}(V_{\omega}, V_{\Omega})$,

$$\begin{split} \omega(x,y)\rho(z) &= \rho((xy)z - x(yz) - (yx)z + y(xz)) \\ &= (\rho(x)\rho(y))\rho(z) - \rho(x)(\rho(y)\rho(z)) - (\rho(y)\rho(x))\rho(z) + \rho(y)(\rho(x)\rho(z)) \\ &= \Omega(\rho(x),\rho(y))\rho(z) \end{split}$$

by the definitions of ω -left-symmetric algebras and isomorphisms. For any $x, y \in V_{\omega}$, there exists $0 \neq z \in V_{\omega}$, then $\rho(z) \neq 0$. Hence we have $\Omega(\rho(x), \rho(y)) = \omega(x, y)$, i.e., $\rho \in \operatorname{Isom}_{\omega,\Omega}(V_{\omega}, V_{\Omega})$.

In the following, we will compute $\text{Isom}(V_{\omega}, V_{\omega})$ for V_{ω} in cases (2) and (3) of Theorem 3.3, and then discuss the classification up to an isomorphism (i.e., ω -isomorphism by Proposition 4.2). We first give a simple fact.

Lemma 4.3. Let V_{ω} be an ω -left-symmetric algebra and $\rho \in \text{Isom}(V_{\omega}, V_{\omega})$. If $x \in V_{\omega}$ such that $l_x = kI$, then $l_{\rho(x)} = kI$.

Proof. Since $\rho \in \text{Isom}(V_{\omega}, V_{\omega})$, we have $\rho(x)\rho(y) = \rho(xy) = k\rho(y)$ for any $y \in V_{\omega}$. Thus $l_{\rho(x)} = kI$.

Case (2) in Theorem 3.3. Then $\{f_1 = e_1, f_2 = e_2 - e_1, f_3 = e_3 + e_2\}$ is a basis of V_{ω} such that

$$\begin{cases} f_1 f_1 = b_1 f_1 + b_2 f_2 + b_3 f_3, \\ f_1 f_2 = -f_2, \ f_1 f_3 = 2f_1 + f_2 + f_3, \\ f_2 f_1 = f_2 f_2 = f_2 f_3 = 0, \\ f_3 f_1 = 2f_1, \ f_3 f_2 = 2f_2, \ f_3 f_3 = 2f_3. \end{cases}$$

Here b_1, b_2, b_3 are arbitrary real numbers. Assume that $\rho \in \text{Isom}(V_{\omega}, V_{\omega})$. By Lemma 4.3 and the algebraic structure, we must have

$$\rho(f_2) = bf_2, \ \rho(f_3) = -af_2 + f_3, \ b \neq 0$$

Furthermore, by $\rho(f_1f_2) = \rho(f_1)\rho(f_2)$ and $\rho(f_1f_3) = \rho(f_1)\rho(f_3)$, we have

$$\rho(f_1) = f_1 + (a + \frac{1-b}{2})f_2$$

Moreover, $\rho(f_1f_1) = \rho(f_1)\rho(f_1)$ if and only if for the coefficient of f_2 ,

$$(b_1 - b_3 + 1)a = \frac{(2b_2 - b_1 - 1)(1 - b)}{2}$$

Set $f'_i = \rho(f_i)$. Then we have the following cases:

- (1) If $2b_2 b_3 \neq 0$, set $a = \frac{b_2(2b_2 b_1 1)}{2b_2 b_3}$ and $\frac{1 b}{2} = \frac{b_2(b_1 b_3 + 1)}{2b_2 b_3}$, we have $\int f'_1 f'_1 = b_1 f'_1 + b_3 f'_2$, $f'_1 f'_2 = -f'_2$, $f'_1 f'_2 = 2f'_1 + f'_2 + f'_2$.
 - $\begin{cases} f_1'f_1' = b_1f_1' + b_3f_3', \ f_1'f_2' = -f_2', \ f_1'f_3' = 2f_1' + f_2' + f_3', \\ f_2'f_1' = f_2'f_2' = f_2'f_3' = 0, \ f_3'f_1' = 2f_1', \ f_3'f_2' = 2f_2', \ f_3'f_3' = 2f_3'. \end{cases}$

For this case, ω -left-symmetric algebras with different (b_1, b_3) are not isomorphic.

(2) If $2b_2 - b_3 = 0$ and $2b_2 = b_1 + 1$, then a and $b \neq 0$ are arbitrary. Furthermore taking a and b such $b_2 = a + \frac{1-b}{2}$, we have

$$\begin{cases} f'_1f'_1 = (2b_2 - 1)f'_1 + 2b_2f'_3, \ f'_1f'_2 = -f'_2, \ f'_1f'_3 = 2f'_1 + f'_2 + f'_3, \\ f'_2f'_1 = f'_2f'_2 = f'_2f'_3 = 0, \ f'_3f'_1 = 2f'_1, \ f'_3f'_2 = 2f'_2, \ f'_3f'_3 = 2f'_3. \end{cases}$$

It is a special case of (1).

(3) If $2b_2 - b_3 = 0$ and $2b_2 \neq b_1 + 1$, then $a + \frac{1-b}{2} = 0$. Furthermore we have

$$\begin{cases} f'_1f'_1 = b_1f'_1 + b_2f'_2 + 2b_2f'_3, \ f'_1f'_2 = -f'_2, \ f'_1f'_3 = 2f'_1 + f'_2 + f'_3, \\ f'_2f'_1 = f'_2f'_2 = f'_2f'_3 = 0, \ f'_3f'_1 = 2f'_1, \ f'_3f'_2 = 2f'_2, \ f'_3f'_3 = 2f'_3. \end{cases}$$

For this case, ω -left-symmetric algebras with different (b_1, b_2) are not isomorphic.

Case (3) in Theorem 3.3. Then $\{f_1 = e_1, f_2 = e_2 - e_3, f_3 = e_3\}$ is a basis of V_{ω} such that

$$\begin{cases} f_1 f_1 = 2f_1, \ f_1 f_2 = 2f_2, \ f_1 f_3 = 2f_3, \\ f_2 f_1 = f_2 f_2 = f_2 f_3 = 0, \\ f_3 f_1 = f_2 + 2f_3, \ f_3 f_2 = -f_1, \\ f_3 f_3 = b_1 f_1 + b_2 f_2 + b_3 f_3. \end{cases}$$

Here $b_1 = a_1 + 1$, $b_2 = a_2$ and $b_3 = a_3$ are arbitrary real numbers. Assume that $\rho \in \text{Isom}(V_{\omega}, V_{\omega})$. By Lemma 4.3 and the algebraic structure, we must have

$$\rho(f_1) = f_1 + af_2, \ \rho(f_2) = bf_2, \ b \neq 0.$$

Furthermore, by $\rho(f_3f_1) = \rho(f_3)\rho(f_1)$ and $\rho(f_3f_2) = \rho(f_3)\rho(f_2)$, we have

$$a = 0, \ \rho(f_3) = (\frac{b}{2} - \frac{1}{2b})f_2 + \frac{1}{b}f_3.$$

Moreover, $\rho(f_3f_3) = \rho(f_3)\rho(f_3)$ means

$$b_1f_1 + b_2bf_2 + b_3((\frac{b}{2} - \frac{1}{2b})f_2 + \frac{1}{b}f_3) = -(\frac{1}{2} - \frac{1}{2b^2})f_1 + \frac{1}{b^2}(b_1f_1 + b_2f_2 + b_3f_3).$$

Then we have the following cases:

- (1) If $b_3 \neq 0$, then b = 1. Thus $\rho = I$.
- (2) If $b_3 = 0$ and $b_2 \neq 0$, then b = 1. Thus $\rho = I$.
- (3) If $b_2 = b_3 = 0$, $b_1 \neq -\frac{1}{2}$, then $b = \pm 1$. (4) If $b_2 = b_3 = 0$, $b_1 = -\frac{1}{2}$, then $b \neq 0$.

It follows that ω -left-symmetric algebras with different (b_1, b_2, b_3) are not isomorphic.

References

- [1] C. Bai, Bijective 1-cocycles and classification of 3-dimensional left-symmetric algebras, Comm. Algebra 37 (2009), no. 3, 1016-1057. https://doi.org/10.1080/ 00927870802279030
- [2] B. Bakalov and V. G. Kac, Field algebras, Int. Math. Res. Not. 2003, no. 3, 123–159. https://doi.org/10.1155/S1073792803204232
- [3] M. Bordemann, Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups, Comm. Math. Phys. 135 (1990), no. 1, 201-216. http://projecteuclid.org/euclid.cmp/1104201925
- [4] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006), no. 3, 323-357. https://doi.org/10.2478/s11533-006-0014-9
- [5]A. Cayley, On the theory of analytic forms called trees. Collected Mathematical Papers of Arthur Cayley, Cambridge Univ. Press, Vol. 3 (1890), 242-246.
- [6] F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices 2001 (2001), no. 8, 395-408. https://doi.org/10.1155/ S1073792801000198
- [7] Y. Chen, C. Liu, and R. Zhang, Classification of three-dimensional complex ω -Lie algebras, Port. Math. 71 (2014), no. 2, 97-108. https://doi.org/10.4171/PM/1943
- Y. Chen and R. Zhang, Simple ω -Lie algebras and 4-dimensional ω -Lie algebras over \mathbb{C} , [8] Bull. Malays. Math. Sci. Soc. 40 (2017), no. 3, 1377-1390. https://doi.org/10.1007/ s40840-015-0120-6

Z. CHEN AND Y. WU

- [9] Y. Chen, Z. Zhang, R. Zhang, and R. Zhuang, Derivations, automorphisms, and representations of complex ω-Lie algebras, Comm. Algebra 46 (2018), no. 2, 708-726. https://doi.org/10.1080/00927872.2017.1327062
- B. Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 197 (1974), 145– 159. https://doi.org/10.2307/1996932
- [11] K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys. 61 (2002), no. 2, 139–147. https://doi.org/10.1023/A:1020712215075
- [12] P. Etingof and A. Soloviev, Quantization of geometric classical r-matrices, Math. Res. Lett. 6 (1999), no. 2, 223–228. https://doi.org/10.4310/MRL.1999.v6.n2.a10
- M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267–288. https://doi.org/10.2307/1970343
- [14] I. Z. Golubchik and V. V. Sokolov, Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys. 7 (2000), no. 2, 184–197. https://doi.org/10.2991/jnmp.2000.7.2.8
- [15] Y. Matsushima, Affine structures on complex manifolds, Osaka Math. J. 5 (1968), 215-222. http://projecteuclid.org/euclid.ojm/1200692168
- [16] A. Medina Perea, Flat left-invariant connections adapted to the automorphism structure of a Lie group, J. Differential Geom. 16 (1981), no. 3, 445-474 (1982). http: //projecteuclid.org/euclid.jdg/1214436223
- [17] P. Nurowski, Deforming a Lie algebra by means of a 2-form, J. Geom. Phys. 57 (2007), no. 5, 1325–1329. https://doi.org/10.1016/j.geomphys.2006.10.008
- [18] E. B. Vinberg, Convex homogeneous cones, Transl. Moscow Math. Soc. 12 (1963), 340– 403.
- [19] L. Zhang, ω -left-symmetric algebras, The thesis of undergraduate students under Z. Chen's guidance, 2011.
- [20] R. Zhang, Representations of ω-Lie algebras and tailed derivations of Lie algebras, Internat. J. Algebra Comput. **31** (2021), no. 2, 325-339. https://doi.org/10.1142/ S021819672150017X
- [21] P. Zusmanovich, ω-Lie algebras, J. Geom. Phys. 60 (2010), no. 6-8, 1028–1044. https: //doi.org/10.1016/j.geomphys.2010.03.005

ZHIQI CHEN SCHOOL OF MATHEMATICS AND STATISTICS GUANGDONG UNIVERSITY OF TECHNOLOGY GUANGZHOU 510520, P. R. CHINA Email address: chenzhiqi@nankai.edu.cn

YANG WU

SCHOOL OF MATHEMATICAL SCIENCES AND LPMC NANKAI UNIVERSITY TIANJIN 300071, P. R. CHINA *Email address:* wy7286545590163.com