Acknowledgement
This work was partially supported by NNSF of China (11931009 and 12131012) and Guangdong Basic and Applied Basic Research Foundation (2023A1515010001).
References
- C. Bai, Bijective 1-cocycles and classification of 3-dimensional left-symmetric algebras, Comm. Algebra 37 (2009), no. 3, 1016-1057. https://doi.org/10.1080/00927870802279030
- B. Bakalov and V. G. Kac, Field algebras, Int. Math. Res. Not. 2003, no. 3, 123-159. https://doi.org/10.1155/S1073792803204232
- M. Bordemann, Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups, Comm. Math. Phys. 135 (1990), no. 1, 201-216. http://projecteuclid.org/euclid.cmp/1104201925 104201925
- D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006), no. 3, 323-357. https://doi.org/10.2478/s11533-006-0014-9
- A. Cayley, On the theory of analytic forms called trees. Collected Mathematical Papers of Arthur Cayley, Cambridge Univ. Press, Vol. 3 (1890), 242-246.
- F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices 2001 (2001), no. 8, 395-408. https://doi.org/10.1155/S1073792801000198
- Y. Chen, C. Liu, and R. Zhang, Classification of three-dimensional complex ω-Lie algebras, Port. Math. 71 (2014), no. 2, 97-108. https://doi.org/10.4171/PM/1943
- Y. Chen and R. Zhang, Simple ω-Lie algebras and 4-dimensional ω-Lie algebras over C, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 3, 1377-1390. https://doi.org/10.1007/s40840-015-0120-6
- Y. Chen, Z. Zhang, R. Zhang, and R. Zhuang, Derivations, automorphisms, and representations of complex ω-Lie algebras, Comm. Algebra 46 (2018), no. 2, 708-726. https://doi.org/10.1080/00927872.2017.1327062
- B. Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 197 (1974), 145-159. https://doi.org/10.2307/1996932
- K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys. 61 (2002), no. 2, 139-147. https://doi.org/10.1023/A:1020712215075
- P. Etingof and A. Soloviev, Quantization of geometric classical r-matrices, Math. Res. Lett. 6 (1999), no. 2, 223-228. https://doi.org/10.4310/MRL.1999.v6.n2.a10
- M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288. https://doi.org/10.2307/1970343
- I. Z. Golubchik and V. V. Sokolov, Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys. 7 (2000), no. 2, 184-197. https://doi.org/10.2991/jnmp.2000.7.2.8
- Y. Matsushima, Affine structures on complex manifolds, Osaka Math. J. 5 (1968), 215-222. http://projecteuclid.org/euclid.ojm/1200692168
- A. Medina Perea, Flat left-invariant connections adapted to the automorphism structure of a Lie group, J. Differential Geom. 16 (1981), no. 3, 445-474 (1982). http://projecteuclid.org/euclid.jdg/1214436223
- P. Nurowski, Deforming a Lie algebra by means of a 2-form, J. Geom. Phys. 57 (2007), no. 5, 1325-1329. https://doi.org/10.1016/j.geomphys.2006.10.008
- E. B. Vinberg, Convex homogeneous cones, Transl. Moscow Math. Soc. 12 (1963), 340-403.
- L. Zhang, ω-left-symmetric algebras, The thesis of undergraduate students under Z. Chen's guidance, 2011.
- R. Zhang, Representations of ω-Lie algebras and tailed derivations of Lie algebras, Internat. J. Algebra Comput. 31 (2021), no. 2, 325-339. https://doi.org/10.1142/S021819672150017X
- P. Zusmanovich, ω-Lie algebras, J. Geom. Phys. 60 (2010), no. 6-8, 1028-1044. https://doi.org/10.1016/j.geomphys.2010.03.005