DOI QR코드

DOI QR Code

THE CLASSIFICATION OF ω-LEFT-SYMMETRIC ALGEBRAS IN LOW DIMENSIONS

  • Zhiqi Chen (School of Mathematics and Statistics Guangdong University of Technology) ;
  • Yang Wu (School of Mathematical Sciences and LPMC Nankai University)
  • Received : 2022.05.28
  • Accepted : 2022.12.15
  • Published : 2023.05.31

Abstract

ω-left-symmetric algebras contain left-symmetric algebras as a subclass and the commutator defines an ω-Lie algebra. In this paper, we classify ω-left-symmetric algebras in dimension 3 up to an isomorphism based on the classification of ω-Lie algebras and the technique of Lie algebras.

Keywords

Acknowledgement

This work was partially supported by NNSF of China (11931009 and 12131012) and Guangdong Basic and Applied Basic Research Foundation (2023A1515010001).

References

  1. C. Bai, Bijective 1-cocycles and classification of 3-dimensional left-symmetric algebras, Comm. Algebra 37 (2009), no. 3, 1016-1057. https://doi.org/10.1080/00927870802279030
  2. B. Bakalov and V. G. Kac, Field algebras, Int. Math. Res. Not. 2003, no. 3, 123-159. https://doi.org/10.1155/S1073792803204232
  3. M. Bordemann, Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups, Comm. Math. Phys. 135 (1990), no. 1, 201-216. http://projecteuclid.org/euclid.cmp/1104201925 104201925
  4. D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006), no. 3, 323-357. https://doi.org/10.2478/s11533-006-0014-9
  5. A. Cayley, On the theory of analytic forms called trees. Collected Mathematical Papers of Arthur Cayley, Cambridge Univ. Press, Vol. 3 (1890), 242-246.
  6. F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices 2001 (2001), no. 8, 395-408. https://doi.org/10.1155/S1073792801000198
  7. Y. Chen, C. Liu, and R. Zhang, Classification of three-dimensional complex ω-Lie algebras, Port. Math. 71 (2014), no. 2, 97-108. https://doi.org/10.4171/PM/1943
  8. Y. Chen and R. Zhang, Simple ω-Lie algebras and 4-dimensional ω-Lie algebras over C, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 3, 1377-1390. https://doi.org/10.1007/s40840-015-0120-6
  9. Y. Chen, Z. Zhang, R. Zhang, and R. Zhuang, Derivations, automorphisms, and representations of complex ω-Lie algebras, Comm. Algebra 46 (2018), no. 2, 708-726. https://doi.org/10.1080/00927872.2017.1327062
  10. B. Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 197 (1974), 145-159. https://doi.org/10.2307/1996932
  11. K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys. 61 (2002), no. 2, 139-147. https://doi.org/10.1023/A:1020712215075
  12. P. Etingof and A. Soloviev, Quantization of geometric classical r-matrices, Math. Res. Lett. 6 (1999), no. 2, 223-228. https://doi.org/10.4310/MRL.1999.v6.n2.a10
  13. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288. https://doi.org/10.2307/1970343
  14. I. Z. Golubchik and V. V. Sokolov, Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys. 7 (2000), no. 2, 184-197. https://doi.org/10.2991/jnmp.2000.7.2.8
  15. Y. Matsushima, Affine structures on complex manifolds, Osaka Math. J. 5 (1968), 215-222. http://projecteuclid.org/euclid.ojm/1200692168
  16. A. Medina Perea, Flat left-invariant connections adapted to the automorphism structure of a Lie group, J. Differential Geom. 16 (1981), no. 3, 445-474 (1982). http://projecteuclid.org/euclid.jdg/1214436223
  17. P. Nurowski, Deforming a Lie algebra by means of a 2-form, J. Geom. Phys. 57 (2007), no. 5, 1325-1329. https://doi.org/10.1016/j.geomphys.2006.10.008
  18. E. B. Vinberg, Convex homogeneous cones, Transl. Moscow Math. Soc. 12 (1963), 340-403.
  19. L. Zhang, ω-left-symmetric algebras, The thesis of undergraduate students under Z. Chen's guidance, 2011.
  20. R. Zhang, Representations of ω-Lie algebras and tailed derivations of Lie algebras, Internat. J. Algebra Comput. 31 (2021), no. 2, 325-339. https://doi.org/10.1142/S021819672150017X
  21. P. Zusmanovich, ω-Lie algebras, J. Geom. Phys. 60 (2010), no. 6-8, 1028-1044. https://doi.org/10.1016/j.geomphys.2010.03.005