• Title/Summary/Keyword: 2.65 GHz

Search Result 236, Processing Time 0.019 seconds

Dual-Band Antenna Design for LTE/Wi-Fi for Maritime Broadband Communication (해상 광대역 통신을 위한 LTE/Wi-Fi용 이중대역 안테나 설계)

  • Oh, Mal-Geun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.665-669
    • /
    • 2018
  • In this paper, we design an antenna for LTE / Wi-Fi communication that operates in 2.65 GHz and 5 GHz band for small-sized broadband communication antenna that can be used in the sea. Microstrip patch antennas were chosen to improve the bandwidth. The slot width, length, and transmission line width were calculated using the theoretical formula for each step. In addition, we designed a microstrip antenna using CST Microwave Studio 2014 program that can design 3D. Simulation results show that the reflection lossis -12.712 dB at 2.65 GHz and -16.583 dB at 5 GHz. The gain was 1.738 dBi at 2.65 GHz and 3.284 dBi at 5 GHz. In this paper, we propose a dual-band antenna for LTE / Wi-Fi, which can be used in maritime environments, which is worse than terrestrial communication, because of differences in communication speed and communication stability compared with those used on land.

Design and Fabrication of 2.65GHz Antenna for Satellite-DMB (위성 DMB용 2.65GHz 안테나 설계 및 제작)

  • Ahn, Je-Sung;Ha, Deock-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2217-2226
    • /
    • 2007
  • In this paper, we propose a microstrip antenna with sufficient impedance bandwidths and gains for the 2.65GHz antenna which can be used in the satellite digital multimedia broadcasting. The prposed 2.65GHz satellite DMB bandwidth microstrip antenna is implemented on a substrate, which is small enough to be installed in practical mobile phones, and described simulation feature using by CST MicroWave Studio program. And also, we measured the antenna performance between the proposed antenna and the commercial antenna. From the analysis, it was found that the radiation pattern of proposed antenna is superior to the commercial antenna and an acceptable frequency band is more wider than the existing products.

Design of 94-GHz High-Gain Differential Low-Noise Amplifier Using 65-nm CMOS (65-nm CMOS 공정을 이용한 94 GHz 고이득 차동 저잡음 증폭기 설계)

  • Seo, Hyun-woo;Park, Jae-hyun;Kim, Jun-seong;Kim, Byung-sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.393-396
    • /
    • 2018
  • Herein, a 94-GHz low-noise amplifier (LNA) using the 65-nm CMOS process is presented. The LNA is composed of a four-stage differential common-source amplifier and impedance matching is accomplished with transformers. The fabricated LNA chip shows a peak gain of 25 dB at 94 GHz and has a 3-dB bandwidth at 5.5 GHz. The chip consumes 46 mW of DC power from a 1.2-V supply, and the total chip area, including the pads, is $0.3mm^2$.

30~46 GHz Wideband Amplifier Using 65 nm CMOS (65 nm CMOS 공정을 이용한 저면적 30~46 GHz 광대역 증폭기)

  • Shin, Miae;Seo, Munkyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.397-400
    • /
    • 2018
  • This paper presents a miniaturized 65 nm CMOS 30~46 GHz wideband amplifier. To minimize the chip area, coupled inductors are used in the matching networks. The measurement shows that the fabricated amplifier exhibits 9.3 dB of peak gain, 16 GHz of 3 dB bandwidth, and 42 % fractional bandwidth. The measured input and output return losses were more than 10 dB at 35.8~46.0 GHz and 28.6~37.8 GHz, respectively. The chip consumes 42 mW at 1.2 V. The measured group delay variation is 19.1 ps within the 3 dB bandwidth and the chip size excluding the pads is $0.09mm^2$.

A 2.65 GHz Doherty Power Amplifier Using Internally-Matched GaN-HEMT (내부정합된 GaN-HEMT를 이용한 2.65 GHz Doherty 전력증폭기)

  • Kang, Hyunuk;Lee, Hwiseob;Lim, Wonseob;Kim, Minseok;Lee, Hyoungjun;Yoon, Jeongsang;Lee, Dongwoo;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.269-276
    • /
    • 2016
  • This paper presents a 2.65 GHz Doherty power amplifier with internally-matched GaN HEMT. Internal matching circuits were adopted to match its harmonic impedances inside the package. Simultaneously, due to the partially matched fundamental impedance, input and output matching networks become simpler. Bond wires and parasitic elements of transistor package were predicted by EM simulation. For the LTE signal with 6.5 dB PAPR, the implemented Doherty power amplifier shows a power gain of 13.0 dB, a saturated output power of 55.4 dBm, an efficiency of 49.1 %, and ACLR of -26.3 dBc at 2.65 GHz with an operating voltage of 48 V.

A 300 GHz Imaging Detector and Image Acquisition Based on 65-nm CMOS Technology (65-nm CMOS 300 GHz 영상 검출기 및 영상 획득)

  • Yoon, Daekeun;Song, Kiryong;Rieh, Jae-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.791-794
    • /
    • 2014
  • In this work, a 300 GHz imaging detector has been developed and image has been acquired in a 65-nm CMOS technology. The circuit was designed based on the square-law of MOSFET devices. The fabricated detector exhibits a maximum responsivity of 2,270 V/W and minimum NEP of $38pW/Hz^{1/2}$ at 285 GHz, and NEP< ${\sim}200pW/Hz^{1/2}$ for 250~305 GHz range. The chip size is $400{\mu}m{\times}450{\mu}m$ including the probing pads and a balun, while the core of the circuit occupies only $150{\mu}m{\times}100{\mu}m$.

A 100~110 GHz LNA and A Coupler Using Standard 65 n CMOS Process (상용 65 n CMOS 공정을 이용한 100~110 GHz 저잡음 증폭기와 커플러)

  • Kim, Jihoon;Park, Hongjong;Kwon, Youngwoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.278-285
    • /
    • 2013
  • In this paper, a 100~110 GHz LNA and A coupler using standard 65 n CMOS process is presented. The LNA consists of three common source FET stages. A few layout types are considered to get high gain characteristic of unit common source cell. Also, optimized performance to achieve low noise characteristic and enough gain. Coupler is composed of broadside coupler using multimetal in CMOS fabrication. In the coupler, the metal strip to meet density rule is used, and the coupler is designed with consideration of the metal strip to function properly. Gain of fabricated LNA is 5.64 dB at 100 GHz and 6.39 dB at 110 GHz. Bandwidth is over 10 % and noise figure is 11.66 dB at 100 GHz. Fabricated coupler has shown insertion loss of 2~3 dB at 100~110 GHz band. Magnitude mismatch of coupler is below 1 dB and phase mismatch of coupler is below $5^{\circ}$.

Patch Antenna for MOB Attached on Safety Helmet (안전모에 부착하는 MOB용 패치 안테나)

  • Kim, Jaewon;Yang, Gyusik
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.93-98
    • /
    • 2016
  • The purpose of this study is to design for MOB antenna attached on safety helmet using microstrip patch antenna. The patch antenna is fabricated in 0.2 mm FR-4 substrate with $64{\times}64mm$ size. The proposed antenna is based on a slot-ring design which cover Inmarsat (1.52 ~ 1.65 GHz) and GPS (1.575 GHz) frequency band. To obtain the optimized parameters, HFSS simulator is used, and antenna is designed by optimized parameters. After antenna was etched, SMA connector was attached to the microstrip feeding line and the result between antenna simulation and measurement was analyzed. Proposed antenna is satisfied the -10 dB bandwidth requirement while simultaneously covering the 1.53 ~ 1.65 GHz.

A Study on Rectangular Planar Monopole Antenna with a Double Sleeve Using Half Cutting (하프 커팅을 이용한 이중 슬리브를 갖는 직사각형 평면 모노폴 안테나에 관한 연구)

  • Kang, Sang-Won;Chang, Tae-Soon;Choe, Gwang-Je
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.257-262
    • /
    • 2017
  • In this paper, we proposed a rectangular planar monopole antenna with a double sleeve that applied to a half-cut and a discontinuous feed structure. A rectangular planar monopole antenna with a double sleeve was cut in half along the magnetic symmetry line, and impedance matching was achieved by a discontinuous structure was applied to a feeder and by adjusting the double sleeve gap. We used the HFSS simulator of ANSYS company to confirm the antenna parameter property, and the antenna size was $21{\times}40mm^2$. In the proposed antenna, the simulation frequency range with VSWR of 2 or less was 2.6GHz to 10.25GHz. The bandwidth was 7.65GHz. The frequency range of the fabricated antenna was 3.3GHz to 9.75GHz, and the bandwidth was 6.45GHz. The measured radiation pattern frequencies were 3.5GHz, 5.5GHz, 7.5GHz, and 9.5GHz. A radiation pattern similar to the dipole antenna pattern was obtained at all frequencies.

Design of Modified Spiral Monopole Printed Antenna for Dual Band Operation (이중 대역 동작을 위한 변형 스파이럴 모노폴 인쇄형 안테나 설계)

  • Cheong, Sae-Han-Sol;Jung, Jin-Woo;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.933-939
    • /
    • 2010
  • In this paper, modified spiral monopole printed antenna for dual band operation in GPS(1.57~1.577 GHz) and WiBro(2.3~2.4 GHz), WLAN(2.4~2.48 GHz) is proposed. To control the frequency ratio of the antenna for dual band operation freely, distance between inner lines of the spiral is diversified by using the different current distribution between basic resonance frequency of spiral monopole antenna and harmonic resonance frequency$(3\lambda_H/4)$. And also the branch line is inserted. Bandwidth(-10 dB) of the antenna is measured 140 MHz(1.47~1.61 GHz) in basic resonance frequency and 420 MHz(2.29~2.71 GHz) in harmonic resonance frequency$(3\lambda_H/4)$. The peak antenna gains are measured 2.825 dBi in GPS(1.57 GHz), and 3.65 dBi in WiBro(2.35 GHz), and 4.564 dBi in WLAN(2.44 GHz).