DOI QR코드

DOI QR Code

A 100~110 GHz LNA and A Coupler Using Standard 65 n CMOS Process

상용 65 n CMOS 공정을 이용한 100~110 GHz 저잡음 증폭기와 커플러

  • Kim, Jihoon (School of Electrical Engineering and Computer Science and INMC, Seoul National University) ;
  • Park, Hongjong (School of Electrical Engineering and Computer Science and INMC, Seoul National University) ;
  • Kwon, Youngwoo (School of Electrical Engineering and Computer Science and INMC, Seoul National University)
  • 김지훈 (서울대학교 전기컴퓨터공학부) ;
  • 박홍종 (서울대학교 전기컴퓨터공학부) ;
  • 권영우 (서울대학교 전기컴퓨터공학부)
  • Received : 2012.11.30
  • Accepted : 2013.03.11
  • Published : 2013.03.31

Abstract

In this paper, a 100~110 GHz LNA and A coupler using standard 65 n CMOS process is presented. The LNA consists of three common source FET stages. A few layout types are considered to get high gain characteristic of unit common source cell. Also, optimized performance to achieve low noise characteristic and enough gain. Coupler is composed of broadside coupler using multimetal in CMOS fabrication. In the coupler, the metal strip to meet density rule is used, and the coupler is designed with consideration of the metal strip to function properly. Gain of fabricated LNA is 5.64 dB at 100 GHz and 6.39 dB at 110 GHz. Bandwidth is over 10 % and noise figure is 11.66 dB at 100 GHz. Fabricated coupler has shown insertion loss of 2~3 dB at 100~110 GHz band. Magnitude mismatch of coupler is below 1 dB and phase mismatch of coupler is below $5^{\circ}$.

본 논문에서는 상용 65 n CMOS 공정을 이용하여 100~110 GHz에서 동작하는 저잡음 증폭기와 커플러를 구현하였다. 제작된 LNA는 3단 공통 소스 FET로 구성되었다. 단위 공통 소스 셀의 높은 이득 특성을 얻기 위해 이를 고려한 레이아웃을 하였다. 또한, 저잡음 특성과 충분한 이득을 얻기 위해 성능을 최적화시켰다. 커플러는 CMOS 공정의 multimetal을 이용한 broadside 커플러로 구성하였다. Density rule을 만족시키기 위한 metal strip을 사용해 이에 의한 영향을 고려해 커플러 동작이 가능하도록 설계하였다. 제작된 저잡음 증폭기의 측정 결과, 100 GHz에서 5.64 dB, 110 GHz에서 6.39 dB의 이득과 10 % 이상의 3-dB 대역폭, 11.66 dB의 잡음 지수를 얻었다. 커플러는 100~110 GHz 대역에서 2~3 dB의 삽입 손실, 1 dB 이하의 magnitude mismatch와 $5^{\circ}$ 이하의 phase mismatch를 얻었다.

Keywords

References

  1. B. Razavi, RF Microelectronics, W. H. Freeman, Pearson, 2011.
  2. Munkyo Seo, B. Jagannathan, J. Pekarik, and M. J. W. Rodwell, "A 150 GHz amplifier with 8 dB gain and +6 dBm Psat in digital 65 nm CMOS using Dummy- prefilled microstrip lines", IEEE Journal of Solid-State Circuits, vol. 44, no. 12, Dec. 2009.
  3. Ozgur Inac, B. Cetinoneri, M. Uzunkol, Y. A. Atesal, and G. M. Rebeiz, "Millimeter-wave and THz circuits in 45-nm SOI CMOS", IEEE Compound Semiconductor Integrated Circuit Symposium, Oct. 2011.
  4. S. Seki, H. Hasegawa, "Cross-tie slow-wave coplanar waveguide on semi-insulating GaAs substrates", Electronics Letters, vol. 17, no. 25, Dec. 1981.
  5. Hsuan-Yi Su, R. Hu, and Chung-Yu Wu, "A 78-102 GHz front-end receiver in 90 nm CMOS technology", IEEE Microwave and Wireless Components Letters, vol. 21, no. 9, 2011.
  6. M. Khanpour, K. W. Tang, P. Garcia, and S. P. Voinigescu, "A wideband W-band receiver frontend in 65 nm CMOS", IEEE Journal of Solid-State Circuits, vol. 43, no. 8, Aug. 2008.
  7. E. Laskin, M. Khanpour, R. Aroca, K. W. Tang, P. Garcia, and S. P. Voinigescu, "A 95 GHz receiver with fundamental-frequency VCO and static frequency divider in 65 nm digital CMOS", IEEE International Solid-State Circuits Conference Dig. of Technical Papers, Feb. 2008.