• Title/Summary/Keyword: 1/n

Search Result 53,176, Processing Time 0.062 seconds

APPLICATION OF CONVOLUTION SUM ∑k=1N-1σ1(k)σ1(2nN-2nk)

  • Kim, Daeyeoul;Kim, Aeran
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.45-54
    • /
    • 2013
  • Let $$S^{\pm}_{(n,k)}\;:=\{(a,b,x,y){\in}\mathbb{N}^4:ax+by=n,x{\equiv}{\pm}y\;(mod\;k)\}$$. From the formula $\sum_{(a,b,x,y){\in}S^{\pm}_{(n,k)}}\;ab=4\sum_{^{m{\in}\mathbb{N}}_{m<n/k}}\;{\sigma}_1(m){\sigma}_1(n-km)+\frac{1}{6}{\sigma}_3(n)-\frac{1}{6}{\sigma}_1(n)-{\sigma}_3(\frac{n}{k})+n{\sigma}_1(\frac{n}{k})$, we find the Diophantine solutions for modulo $2^{m^{\prime}}$ and $3^{m^{\prime}}$, where $m^{\prime}{\in}\mathbb{N}$.

GENERALIZED FIBONACCI AND LUCAS NUMBERS OF THE FORM wx2 AND wx2 ∓ 1

  • Keskin, Refik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1041-1054
    • /
    • 2014
  • Let $P{\geq}3$ be an integer and let ($U_n$) and ($V_n$) denote generalized Fibonacci and Lucas sequences defined by $U_0=0$, $U_1=1$; $V_0= 2$, $V_1=P$, and $U_{n+1}=PU_n-U_{n-1}$, $V_{n+1}=PV_n-V_{n-1}$ for $n{\geq}1$. In this study, when P is odd, we solve the equations $V_n=kx^2$ and $V_n=2kx^2$ with k | P and k > 1. Then, when k | P and k > 1, we solve some other equations such as $U_n=kx^2$, $U_n=2kx^2$, $U_n=3kx^2$, $V_n=kx^2{\mp}1$, $V_n=2kx^2{\mp}1$, and $U_n=kx^2{\mp}1$. Moreover, when P is odd, we solve the equations $V_n=wx^2+1$ and $V_n=wx^2-1$ for w = 2, 3, 6. After that, we solve some Diophantine equations.

APPROXIMATING COMMON FIXED POINTS OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Kim, Tae-Hwa
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.859-866
    • /
    • 1998
  • In this paper we shall prove weak(or strong) convergence of the iterates ${\chi_n} \;and \;{y_n}$ defined by $\chi-{n+1}= \alpha_nTy_n+(1-\alpha_n)S\chi_n , y_n=\beta_nT\chi_n+(1-\beta_n)\chi_n$ for all n$\geq$1, where $\alpha_n$ and $\beta_n$ satisfy 0$\leq\alpha_n,\beta_n\leq$b<1.

THE GENERALIZATION OF CLEMENT'S THEOREM ON PAIRS OF PRIMES

  • Lee, Heon-Soo;Park, Yeon-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.89-96
    • /
    • 2009
  • In this article, we show a generalization of Clement's theorem on the pair of primes. For any integers n and k, integers n and n + 2k are a pair of primes if and only if 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) whenever (n, (2k)!) = (n + 2k, (2k)!) = 1. Especially, n or n + 2k is a composite number, a pair (n, n + 2k), for which 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) is called a pair of pseudoprimes for any positive integer k. We have pairs of pseudorimes (n, n + 2k) with $n{\leq}5{\times}10^4$ for each positive integer $k(4{\leq}k{\leq}10)$.

  • PDF

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

  • Fu, Ke-Ang;Hu, Li-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • Let {$X_n;n\;\geq\;1$} be a strictly stationary sequence of negatively associated random variables with mean zero and finite variance. Set $S_n\;=\;{\sum}^n_{k=1}X_k$, $M_n\;=\;max_{k{\leq}n}|S_k|$, $n\;{\geq}\;1$. Suppose $\sigma^2\;=\;EX^2_1+2{\sum}^\infty_{k=2}EX_1X_k$ (0 < $\sigma$ < $\infty$). We prove that for any b > -1/2, if $E|X|^{2+\delta}$(0<$\delta$$\leq$1), then $$lim\limits_{\varepsilon\searrow0}\varepsilon^{2b+1}\sum^{\infty}_{n=1}\frac{(loglogn)^{b-1/2}}{n^{3/2}logn}E\{M_n-\sigma\varepsilon\sqrt{2nloglogn}\}_+=\frac{2^{-1/2-b}{\sigma}E|N|^{2(b+1)}}{(b+1)(2b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2(b+1)}}$$ and for any b > -1/2, $$lim\limits_{\varepsilon\nearrow\infty}\varepsilon^{-2(b+1)}\sum^{\infty}_{n=1}\frac{(loglogn)^b}{n^{3/2}logn}E\{\sigma\varepsilon\sqrt{\frac{\pi^2n}{8loglogn}}-M_n\}_+=\frac{\Gamma(b+1/2)}{\sqrt{2}(b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2b+2'}}$$, where $\Gamma(\cdot)$ is the Gamma function and N stands for the standard normal random variable.

Hong Gil Ju(洪吉周)'s Algebra (홍길주(洪吉周)의 대수학(代數學))

  • Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • In this paper, we investigate the part dealing with algebra in Hong Gil Ju's GiHaSinSul to analyze his algebraic structure. The book consists of three parts. In the first part SangChuEokSan, he just renames Die jie hu zheng(疊借互徵) in Shu li jing yun to SangChuEokSan and adds a few examples. In the second part GaeBangMongGu, he obtains the following identities: $$n^2=n(n-1)+n=2S_{n-1}^1+S_n^0;\;n^3=n(n-1)(n+1)+n=6S_{n-1}^2+S_n^0$$; $$n^4=(n-1)n^2(n+1)+n(n-1)+n=12T_{n-1}^2+2S_{n-1}^1+S_n^0$$; $$n^5=2\sum_{k=1}^{n-1}5S_k^1(1+S_k^1)+S_n^0$$ where $S_n^0=n,\;S_n^{m+1}={\sum}_{k=1}^nS_k^m,\;T_n^1={\sum}_{k=1}^nk^2,\;and\;T_n^2={\sum}_{k=1}^nT_k^1$, and then applies these identities to find the nth roots $(2{\leq}n{\leq}5)$. Finally in JabSwoeSuCho, he introduces the quotient ring Z/(9) of the ring Z of integers to solve a system of congruence equations and also establishes a geometric procedure to obtain golden sections from a given one.

  • PDF

CHARACTERIZATIONS OF THE POWER FUNCTION DISTRIBUTION BY THE INDEPENDENCE OF RECORD VALUES

  • Chang, Se-Kyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.139-146
    • /
    • 2007
  • In this paper, we present characterizations of the power function distribution by the independence of record values. We establish that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0, if and only if $\frac{X_{L(n)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$. And we prove that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0; if and only if $\frac{X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$. Also we characterize that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0, if and only if $\frac{X_{L(n)}+X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$.

  • PDF

GENERALIZED CUBIC MAPPINGS OF r-TYPE IN SEVERAL VARIABLES

  • Kang, Dong Seung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.37-45
    • /
    • 2007
  • Let X, Y be vector spaces. In this paper, we investigate the generalized Hyers-Ulam-Rassias stability problem for a cubic function $f:X{\rightarrow}Y$ satisfies $$r^3f(\frac{\Sigma_{j=1}^{n-1}x_j+2x_n}{r})+r^3f(\frac{\Sigma_{j=1}^{n-1}x_j-2x_n}{r})+8\sum_{j=1}^{n-1}f(x_j)=2f{\sum_{j=1}^{n-1}}x_j)+4{\sum_{j=1}^{n-1}}(f(x_j+x_n)+f(x_j-x_n))$$ for all $x_1,{\cdots},x_n{\in}X$.

  • PDF

Selection of epitope for development of H5N1 specific diagnostic kit based on bioinformatics (생명정보학 기반 H5N1에 특이적인 진단키트 개발을 위한 epitope 선별)

  • Lee, In Seoung;Kim, Hak Yong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.57-58
    • /
    • 2014
  • 인플루엔자 A 바이러스의 아형인 H5N1은 고병원성으로 조류 독감을 일으킨다. H5N1 바이러스는 원래 조류끼리만 감염되는 독감이고, 사람에게는 전염되지 않는다고 알려져 있었으나, 2003년에 베트남과 중국을 시작으로 현재까지 168명의 사망자가 기록되고 있다. 그러나 현재 시판되고 있는 진단키트(Rapid diagnostic kits)들은 H5N1 에 특이적인 것이 아니라 influenza A virus 모두를 진단한다. 따라서 influenza 감염여부는 확인 할 수 있지만, 이것이 H5N1 인지는 확인 할 수가 없다. H5N1은 전염성이 강하기 때문에 빠르게 진단하여 감염조류를 살 처분 하여야 더 많은 경제적 손실을 줄일 수 있다. 따라서 H5N1 에만 특이적인 epitope를 네트워크 기반으로 예측하여 진단제에 응용할 수 있도록 하고자 한다. 각 서열 정보는 Openflu (http://openflu. vital-it.ch/browse.php)에서 얻었다. H5N1은 H1N1에서 유래되었기 때문에 두 subtype의 차이점을 알아보고자 TCOFFEE에서 multiple sequence alignment를 수행한 결과 N-terminal 부분이 상이하였다. 상이한 H5N1의 N-terminal 부분이 H5N1 virus에 감염된 모든 host에서 존재하는지 알아보기 위해 host가 사람인 경우와 조류인 경우를 TCOFFEE에서 alignment 하였다. 그 결과 H5N1의 N-terminal 부분은 사람과 조류에서 보존적이었다. 따라서 H5N1의 N-terminal이 다른 subtype과 유사하지 않고 H5에만 특이적이기 때문에 진단키트 제작을 위한 epitope로 사용할 수 있을 것으로 기대된다.

  • PDF