GENERALIZED CUBIC MAPPINGS OF r - TYPE IN SEVERAL VARIABLES

Dong Seung Kang*

Abstract. Let X, Y be vector spaces. In this paper, we investigate the generalized Hyers-Ulam-Rassias stability problem for a cubic function $f: X \rightarrow Y$ satisfies

$$
\begin{aligned}
& r^{3} f\left(\frac{\sum_{j=1}^{n-1} x_{j}+2 x_{n}}{r}\right)+r^{3} f\left(\frac{\sum_{j=1}^{n-1} x_{j}-2 x_{n}}{r}\right)+8 \sum_{j=1}^{n-1} f\left(x_{j}\right) \\
= & 2 f\left(\sum_{j=1}^{n-1} x_{j}\right)+4 \sum_{j=1}^{n-1}\left(f\left(x_{j}+x_{n}\right)+f\left(x_{j}-x_{n}\right)\right)
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n} \in X$.

1. Introduction

The study of stability problems for functional equations is related to the following question originated by Ulam [13] concerning the stability of group homomorphisms:

Let G_{1} be a group and let G_{2} be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon>0$ does there exist a $\delta>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(h(x y), h(x) h(y))<\delta
$$

for all $x, y \in G_{1}$, then a homomorphism $H: G_{1} \rightarrow G_{2}$ exists with $d(h(x), H(x))<\varepsilon$ for all $x \in G_{1}$?

The first partial solution to Ulam's question was provided by D. H. Hyers [5]. Let X and Y are Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Hyers showed that if a function $f: X \rightarrow Y$ satisfies the following inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

Received December 30, 2006.
2000 Mathematics Subject Classification: Primary 39B52.
Key words and phrases: stability, functional equation, cubic mapping.
for all $\epsilon \geq 0$ and for all $x, y \in X$, then the limit

$$
a(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)
$$

exists for each $x \in X$ and $a: X \rightarrow Y$ is the unique additive function such that

$$
\|f(x)-a(x)\| \leq \epsilon
$$

for any $x \in X$. Moreover, if $f(t x)$ is continuous in t for each fixed $x \in X$, then a is linear.

Hyers's theorem was generalized in various directions. In particular, Th. M. Rassias [8] and Z. Gajda [3] considered a generalized version of the theorem of Hyers which permitted the Cauchy difference to become unbounded. They proved the following theorem by using a direct method: if a function $f: X \rightarrow Y$ satisfies the following inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|x\|^{p}\right)
$$

for some $\theta \geq 0,0 \leq p<1$, and for all $x, y \in X$, then there exists a unique additive function such that

$$
\|f(x)-a(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$. Moreover, if $f(t x)$ is continuous in t for each fixed $x \in X$, then a is linear. Găvruta [4] generalized the Rassias's result above.

The quadratic function $f(x)=c x^{2}(c \in \mathbb{R})$ satisfies the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) . \tag{1.1}
\end{equation*}
$$

This question is called the quadratic functional equation, and every solution of the equation (1.1) is called a quadratic function.

A Hyers-Ulam stability theorem for the quadratic functional equation (1.1) was first proved by Skof [12] for functions $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [1] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an abelian group. In [2], Czerwik proved the Hyers-Ulam-Rassias stability of the quadratic functional equation. Several functional equations have been investigated; see [9], [10], and [11].

The cubic function $f(x)=c x^{3}(c \in \mathbb{R})$ satisfies the functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) . \tag{1.2}
\end{equation*}
$$

We promise that by a cubic function we mean every solution of the equation (1.2) is called a cubic function. The equation (1.2) was solved
by Jun and Kim [6]. Also, they proved the generalized Hyers-UlamRassias stability problem for the given functional equation : see [7]

$$
\begin{equation*}
f(x+2 y)+f(x-2 y)+6 f(x)=4 f(x+y)+4 f(x-y) \tag{1.3}
\end{equation*}
$$

Throughout this paper, we assume that $r\left(r^{3} \neq 1\right)$ is a real number and $n \geq 2$ is an integer number.

In this paper, for all $x_{1}, \cdots, x_{n} \in X$ the following odd functional equation $f: X \rightarrow Y$ such that

$$
\begin{align*}
& r^{3} f\left(\frac{\sum_{j=1}^{n-1} x_{j}+2 x_{n}}{r}\right)+r^{3} f\left(\frac{\sum_{j=1}^{n-1} x_{j}-2 x_{n}}{r}\right)+8 \sum_{j=1}^{n-1} f\left(x_{j}\right) \tag{1.4}\\
& \quad=2 f\left(\sum_{j=1}^{n-1} x_{j}\right)+4 \sum_{j=1}^{n-1}\left(f\left(x_{j}+x_{n}\right)+f\left(x_{j}-x_{n}\right)\right)
\end{align*}
$$

is a solution of the equation (1.3) and then investigate the generalized Hyers-Ulam-Rassias stability in Banach spaces.

2. Generalized cubic mappings of r-type in several variables

Lemma 2.1. Let X and Y be real vector spaces. If an odd function $f: X \rightarrow Y$ satisfies the functional equation (1.4), then there exists functions $B: X \times X \times X \rightarrow Y$ and $A: X \rightarrow Y$ such that
$B(x, y, z)=\frac{1}{24}[f(x+y+z)+f(x-y-z)-f(x+y-z)-f(x-y+z)]$ is symmetric for each fixed one variable and additive for each two variables and A is additive.

Proof. Since f is odd, we have $f(0)=0$. Now, setting $x_{1}=x, x_{n}=$ y, and $x_{j}=0(j=2, \cdots, n-1)$, we write

$$
\begin{equation*}
r^{3} f\left(\frac{x+2 y}{r}\right)+r^{3} f\left(\frac{x-2 y}{r}\right)+6 f(x)=4 f(x+y)+4 f(x-y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$. By letting $y=0$, we have

$$
r^{3} f\left(\frac{x}{r}\right)=f(x)
$$

for all $x \in X$. Thus we may conclude that

$$
\begin{aligned}
4 f(x+y)+4 f(x-y) & =r^{3} f\left(\frac{x+2 y}{r}\right)+r^{3} f\left(\frac{x-2 y}{r}\right)+6 f(x) \\
& =f(x+2 y)+f(x-2 y)+6 f(x)
\end{aligned}
$$

for all $x, y \in X$, that is, the equation (1.4) satisfies the equation (1.3). The remains of proof follow from [7, Theorem 2.1].

Lemma 2.2. Let X and Y be real vector spaces. If an odd function $f: X \rightarrow Y$ satisfies the functional equation (1.3) and $f(2 x)=8 f(x)$, for all $x \in X$, then f is cubic.

Proof. Letting $x=2 x$ in the equation (1.3), we have

$$
f(2 x+2 y)+f(2 x-2 y)+6 f(2 x)=4 f(2 x+y)+4 f(2 x-y)
$$

Since $f(2 x)=8 f(x)$, for all $x \in X$, we get

$$
8 f(x+y)+8 f(x-y)+48 f(x)=4 f(2 x+y)+4 f(2 x-y)
$$

that is, it satisfies the equation (1.2), as desired.

3. Hyers-Ulam-Rassias stability

Throughout in this section, let X be a normed vector space with norm $\|\cdot\|$ and Y be a Banach space with norm $\|\cdot\|$. For the given odd mapping $f: X \rightarrow Y$, we define

$$
\begin{align*}
& D f\left(x_{1}, \cdots, x_{n}\right):=r^{3} f\left(\frac{\sum_{j=1}^{n-1} x_{j}+2 x_{n}}{r}\right)+r^{3} f\left(\frac{\sum_{j=1}^{n-1} x_{j}-2 x_{n}}{r}\right) \tag{3.1}\\
+ & 8 \sum_{j=1}^{n-1} f\left(x_{j}\right)-2 f\left(\sum_{j=1}^{n-1} x_{j}\right)-4 \sum_{j=1}^{n-1}\left(f\left(x_{j}+x_{n}\right)+f\left(x_{j}-x_{n}\right)\right)
\end{align*}
$$

for all $x_{1}, \cdots, x_{n} \in X$.
ThEOREM 3.1. Let $n \geq 2$ be an integer number, let $|r|<1$, and let $f: X \rightarrow Y$ be an odd mapping for which there exists a function $\phi: X^{n} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\tilde{\phi}\left(x_{1}, \cdots, x_{n}\right):=\sum_{j=0}^{\infty} r^{3 j} \phi\left(\frac{x_{1}}{r^{j}}, \cdots, \frac{x_{n}}{r^{j}}\right)<\infty \tag{3.2}\\
\left\|D f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \phi\left(x_{1}, \cdots, x_{n}\right) \tag{3.3}
\end{gather*}
$$

and

$$
\|f(2 x)-8 f(x)\| \leq \delta
$$

for all $x_{1}, \cdots, x_{n}, x \in X$ and for some $\delta \geq 0$. Then for every $m \in$ $\{1,2, \cdots, n-1\}$, there exists a generalized cubic mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-C(x)\| \leq \tilde{\phi}(\underbrace{\frac{x}{m}, \cdots, \frac{x}{m}}_{m-\text { terms }}, 0, \cdots, 0) \tag{3.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Let $1 \leq m \leq n-1$ be an integer number. By setting $x_{j}=$ $\frac{x}{m}(j=1, \cdots, m)$ and $x_{m+1}=\cdots=x_{n}=0$, we have

$$
\begin{equation*}
\left\|f(x)-r^{3} f\left(\frac{x}{r}\right)\right\| \leq \phi(\underbrace{\frac{x}{m}, \cdots, \frac{x}{m}}_{m}, 0, \cdots, 0) \tag{3.5}
\end{equation*}
$$

for all $x \in X$. Replacing x by $\frac{x}{m}$ in the equation (3.5) and then multiplying by r^{3}, we have

$$
\begin{equation*}
\left\|r^{3} f\left(\frac{x}{r}\right)-r^{3 \cdot 2} f\left(\frac{x}{r^{2}}\right)\right\| \leq r^{3} \phi(\underbrace{\frac{x}{m}, \cdots, \frac{x}{m}}_{m}, 0, \cdots, 0) \tag{3.6}
\end{equation*}
$$

for all $x \in X$. Now, combining equations (3.5) and (3.6), we get

$$
\left.\begin{array}{rl}
\left\|f(x)-r^{3 \cdot 2} f\left(\frac{x}{r^{2}}\right)\right\| & \leq \phi(\underbrace{\frac{x}{m}, \cdots, \frac{x}{m}}_{m}, 0, \cdots, 0) \\
& +r^{3} \phi(\underbrace{\frac{x}{m \cdot r}}_{m}, \cdots, \frac{x}{m \cdot r}
\end{array}, 0, \cdots, 0\right),
$$

for all $x \in X$. Continue this way, we may have

$$
\begin{equation*}
\left\|f(x)-r^{3 \cdot j} f\left(\frac{x}{r^{j}}\right)\right\| \leq \sum_{k=0}^{j-1} r^{3 \cdot k} \phi(\underbrace{\frac{x}{m \cdot r^{k}}, \cdots, \frac{x}{m \cdot r^{k}}}_{m}, 0, \cdots, 0) \tag{3.7}
\end{equation*}
$$

for all positive integer j and all $x \in X$.
Dividing the equation (3.7) by $r^{3 \cdot s}$ and then substituting x by $\frac{x}{r^{s}}$, we have

$$
\begin{gathered}
r^{3 \cdot s}\left\|f\left(\frac{x}{r^{s}}\right)-r^{3 \cdot j} f\left(\frac{x}{r^{j+s}}\right)\right\| \\
\leq r^{3 \cdot s} \sum_{k=0}^{j-1} \cdot r^{3 \cdot k} \phi(\underbrace{\frac{x}{m \cdot r^{k+s}}, \cdots, \frac{x}{m \cdot r^{k+s}}}_{m}, 0, \cdots, 0),
\end{gathered}
$$

for all $x \in X$.
By taking $s \rightarrow \infty$, we may conclude that $\left\{r^{3 \cdot j} f\left(\frac{x}{r^{j}}\right)\right\}$ is a Cauchy sequence in a Banach space Y. This implies that the sequence $\left\{r^{3 \cdot j} f\left(\frac{x}{r^{j}}\right)\right\}$ converges. Hence we can define a function $C: X \rightarrow Y$ by

$$
C(x)=\lim _{j \rightarrow \infty} r^{3 \cdot j} f\left(\frac{x}{r^{j}}\right),
$$

for all $x \in X$. Then

$$
\begin{aligned}
\left\|D C\left(x_{1}, \cdots, x_{n}\right)\right\| & =\lim _{k \rightarrow \infty} r^{3 \cdot k}\left\|D f\left(\frac{x_{1}}{r^{k}}, \cdots, \frac{x_{n}}{r^{k}}\right)\right\| \\
& \leq \lim _{k \rightarrow \infty} r^{3 \cdot k} \phi\left(\frac{x_{1}}{r^{k}}, \cdots, \frac{x_{n}}{r^{k}}\right) \\
& =0,
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n} \in X$. That is, $D C\left(x_{1}, \cdots, x_{n}\right)=0$. Obviously, we have C is odd and $C(2 x)=8 C(x)$, for all $x \in X$. Corollary 2.2 implies that the function $C: X \rightarrow Y$ is a cubic mapping.

It only remains to show that the function C is unique. Let $C^{\prime}: X \rightarrow$ Y be another generalized cubic function satisfying the equation (3.4). Then

$$
\begin{aligned}
& \left\|C(x)-C^{\prime}(x)\right\|=r^{3 k}\left\|C\left(\left(\frac{1}{r}\right)^{k} x\right)-C^{\prime}\left(\left(\frac{1}{r}\right)^{k} x\right)\right\| \\
\leq & r^{3 k}\left(\left\|C\left(\left(\frac{1}{r}\right)^{k} x\right)-f\left(\left(\frac{1}{r}\right)^{k} x\right)\right\|+\left\|C^{\prime}\left(\left(\frac{1}{r}\right)^{k} x\right)-f\left(\left(\frac{1}{r}\right)^{k} x\right)\right\|\right) \\
\leq & 2 \cdot r^{3 k} \tilde{\phi}\left(\left(\frac{1}{r}\right)^{k} x,\left(\frac{1}{r}\right)^{k} x, 0 \cdots, 0\right) \\
= & 2 \cdot r^{3 k} \sum_{j=0}^{\infty} r^{3 j} \phi\left(\left(\frac{1}{r}\right)^{j+k} x,\left(\frac{1}{r}\right)^{j+k} x, 0, \cdots, 0\right) \\
= & 2 \cdot \sum_{j=k}^{\infty} r^{3 j} \phi\left(\left(\frac{1}{r}\right)^{j} x,\left(\frac{1}{r}\right)^{j} x, 0, \cdots, 0\right) \rightarrow 0,
\end{aligned}
$$

for all $x \in X$. As $r \rightarrow \infty$, we can conclude that $C(x)=C^{\prime}(x)$, for all $x \in X$; that is, C is unique.

Corollary 3.2. Let $r>1$, and let θ and $p<3$ be positive real numbers ($O r$, let $r<1$, and let θ and $p>3$ be positive real numbers).

Let $f: X \rightarrow Y$ be a function such that

$$
\left\|D f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \theta \sum_{i=1}^{n}\left\|x_{i}\right\|^{p}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then there exists a unique generalized cubic mapping $C: X \rightarrow Y$ such that

$$
\|f(x)-C(x)\| \leq \frac{m \theta}{r^{3-p}-1}\|x\|^{p}
$$

for all $x \in X$, and for any $1 \leq m \leq n-1$.
Proof. Define $\phi\left(x_{1}, \cdots, x_{n}\right)=\theta \sum_{i=1}^{n}\left\|x_{i}\right\|^{p}$, and apply to Theorem 3.1.

Theorem 3.3. Let $n \geq 2$ be an integer number, let $|r|>1$, and let $f: X \rightarrow Y$ be a mapping for which there exists a function $\phi: X^{n} \rightarrow$ $[0, \infty)$ such that

$$
\begin{gather*}
\tilde{\phi}\left(x_{1}, \cdots, x_{n}\right):=\sum_{j=1}^{\infty} r^{-3 j} \phi\left(r^{j} x_{1}, \cdots, r^{j} x_{n}\right)<\infty \tag{3.8}\\
\left\|D f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \phi\left(x_{1}, \cdots, x_{n}\right) \tag{3.9}
\end{gather*}
$$

and

$$
\|f(2 x)-8 f(x)\| \leq \delta
$$

for all $x_{1}, \cdots, x_{n}, x \in X$ and for some $\delta \geq 0$. Then for every $m \in$ $\{1,2, \cdots, n-1\}$, there exists a generalized cubic mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-C(x)\| \leq \tilde{\phi}(\underbrace{\frac{x}{m}, \cdots, \frac{x}{m}}_{m-\text { terms }}, 0, \cdots, 0) \tag{3.10}
\end{equation*}
$$

for all $x \in X$.
Proof. If x is replaced by $r x$ and dividing by r^{3} in the equation (3.5) in the proof of Theorem 3.1, we have the following equation

$$
\begin{equation*}
\left\|f(x)-\frac{1}{r^{3}} f(r x)\right\| \leq \frac{1}{r^{3}} \phi(\underbrace{\frac{r}{m} x, \cdots, \frac{r}{m} x}_{m}, 0, \cdots, 0), \tag{3.11}
\end{equation*}
$$

for all $x \in X$. The remains of the proof are similar to the proof of Theorem 3.1.

Corollary 3.4. Let $r>1$, and let θ and $p>3$ be positive real numbers (Or, let $r<1$, and let θ and $p<3$ be positive real numbers). Let $f: X \rightarrow Y$ be a function such that

$$
\left\|D f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \theta \sum_{i=1}^{n}\left\|x_{i}\right\|^{p}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then there exists a unique generalized cubic mapping $C: X \rightarrow Y$ such that

$$
\|f(x)-C(x)\| \leq m \theta \cdot \frac{r^{p-3}}{r^{3-p}-1}\|x\|^{p}
$$

for all $x \in X$, and for any $1 \leq m \leq n-1$.
Proof. Define $\phi\left(x_{1}, \cdots, x_{n}\right)=\theta \sum_{i=1}^{n}\left\|x_{i}\right\|^{p}$, and apply to Theorem 3.3.

References

[1] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes. Math. 27 (1984), 576-86.
[2] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[3] Z. Gajada, On the stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434.
[4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[5] D. H. Hyers, On the stability of the linear equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[6] K.-W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
[7] K.-W. Jun and H.-M. Kim, On the Hyers-Ulam-Rassias stability of a general cubic functional equation, Math. Inequal. App., 6 (2003), 289-302.
[8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[9] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[10] Th. M. Rassias, P. Šemrl On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[11] Th. M. Rassias, K. Shibata, Variational problem of some quadratic functions in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253.
[12] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Semin. Mat. Fis. Milano 53 (1983) 113-129.
[13] S. M. Ulam, Problems in Morden Mathematics, Wiley, New York (1960).

Department of Mathematics Education Dankook University
Seoul, 140-714, Republic of Korea
E-mail: dskang@dankook.ac.kr

