JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **20**, No. 1, March 2007

GENERALIZED CUBIC MAPPINGS OF *r*- TYPE IN SEVERAL VARIABLES

DONG SEUNG KANG*

ABSTRACT. Let X, Y be vector spaces. In this paper, we investigate the generalized Hyers-Ulam-Rassias stability problem for a cubic function $f: X \to Y$ satisfies

$$r^{3}f(\frac{\sum_{j=1}^{n-1} x_{j} + 2x_{n}}{r}) + r^{3}f(\frac{\sum_{j=1}^{n-1} x_{j} - 2x_{n}}{r}) + 8\sum_{j=1}^{n-1} f(x_{j})$$
$$= 2f(\sum_{j=1}^{n-1} x_{j}) + 4\sum_{j=1}^{n-1} \left(f(x_{j} + x_{n}) + f(x_{j} - x_{n})\right)$$
for all $x_{1}, \dots, x_{n} \in X$.

1. Introduction

The study of stability problems for functional equations is related to the following question originated by Ulam [13] concerning the stability of group homomorphisms:

Let G_1 be a group and let G_2 be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon > 0$ does there exist a $\delta > 0$ such that if a mapping $h: G_1 \to G_2$ satisfies the inequality

$$d(h(xy), h(x)h(y)) < \delta$$

for all $x, y \in G_1$, then a homomorphism $H : G_1 \to G_2$ exists with $d(h(x), H(x)) < \varepsilon$ for all $x \in G_1$?

The first partial solution to Ulam's question was provided by D. H. Hyers [5]. Let X and Y are Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Hyers showed that if a function $f: X \to Y$ satisfies the following inequality

$$\parallel f(x+y) - f(x) - f(y) \parallel \le \epsilon$$

Received December 30, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 39B52.

Key words and phrases: stability, functional equation, cubic mapping.

for all $\epsilon \geq 0$ and for all $x, y \in X$, then the limit

$$a(x) = \lim_{n \to \infty} 2^{-n} f(2^n x)$$

exists for each $x \in X$ and $a: X \to Y$ is the unique additive function such that

$$\| f(x) - a(x) \| \le \epsilon$$

for any $x \in X$. Moreover, if f(tx) is continuous in t for each fixed $x \in X$, then a is linear.

Hyers's theorem was generalized in various directions. In particular, Th. M. Rassias [8] and Z. Gajda [3] considered a generalized version of the theorem of Hyers which permitted the Cauchy difference to become unbounded. They proved the following theorem by using a direct method: if a function $f: X \to Y$ satisfies the following inequality

$$|| f(x+y) - f(x) - f(y) || \le \theta(|| x ||^p + || x ||^p)$$

for some $\theta \ge 0$, $0 \le p < 1$, and for all $x, y \in X$, then there exists a unique additive function such that

$$|| f(x) - a(x) || \le \frac{2\theta}{2 - 2^p} || x ||^p$$

for all $x \in X$. Moreover, if f(tx) is continuous in t for each fixed $x \in X$, then a is linear. Găvruta [4] generalized the Rassias's result above.

The quadratic function $f(x) = cx^2 (c \in \mathbb{R})$ satisfies the functional equation

(1.1)
$$f(x+y) + f(x-y) = 2f(x) + 2f(y).$$

This question is called the quadratic functional equation, and every solution of the equation (1.1) is called a quadratic function.

A Hyers-Ulam stability theorem for the quadratic functional equation (1.1) was first proved by Skof [12] for functions $f: X \to Y$, where X is a normed space and Y is a Banach space. Cholewa [1] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an abelian group. In [2], Czerwik proved the Hyers-Ulam-Rassias stability of the quadratic functional equation. Several functional equations have been investigated; see [9], [10], and [11].

The cubic function $f(x) = cx^3 (c \in \mathbb{R})$ satisfies the functional equation

(1.2)
$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x)$$
.

We promise that by a cubic function we mean every solution of the equation (1.2) is called a cubic function. The equation (1.2) was solved

38

by Jun and Kim [6]. Also, they proved the generalized Hyers-Ulam-Rassias stability problem for the given functional equation : see [7]

(1.3)
$$f(x+2y) + f(x-2y) + 6f(x) = 4f(x+y) + 4f(x-y)$$
.

Throughout this paper, we assume that $r(r^3 \neq 1)$ is a real number and $n \geq 2$ is an integer number.

In this paper, for all $x_1, \dots, x_n \in X$ the following odd functional equation $f: X \to Y$ such that

(1.4)
$$r^{3}f(\frac{\sum_{j=1}^{n-1}x_{j}+2x_{n}}{r}) + r^{3}f(\frac{\sum_{j=1}^{n-1}x_{j}-2x_{n}}{r}) + 8\sum_{j=1}^{n-1}f(x_{j})$$
$$= 2f(\sum_{j=1}^{n-1}x_{j}) + 4\sum_{j=1}^{n-1}\left(f(x_{j}+x_{n}) + f(x_{j}-x_{n})\right)$$

is a solution of the equation (1.3) and then investigate the generalized Hyers-Ulam-Rassias stability in Banach spaces.

2. Generalized cubic mappings of r-type in several variables

LEMMA 2.1. Let X and Y be real vector spaces. If an odd function $f : X \to Y$ satisfies the functional equation (1.4), then there exists functions $B : X \times X \times X \to Y$ and $A : X \to Y$ such that

$$B(x, y, z) = \frac{1}{24} [f(x+y+z) + f(x-y-z) - f(x+y-z) - f(x-y+z)]$$

is symmetric for each fixed one variable and additive for each two variables and A is additive.

Proof. Since f is odd, we have f(0) = 0. Now, setting $x_1 = x, x_n = y$, and $x_j = 0$ $(j = 2, \dots, n-1)$, we write

(2.1)
$$r^{3}f(\frac{x+2y}{r}) + r^{3}f(\frac{x-2y}{r}) + 6f(x) = 4f(x+y) + 4f(x-y),$$

for all $x, y \in X$. By letting y = 0, we have

$$r^3 f(\frac{x}{r}) = f(x) \,,$$

for all $x \in X$. Thus we may conclude that

$$\begin{aligned} 4f(x+y) + 4f(x-y) &= r^3 f(\frac{x+2y}{r}) + r^3 f(\frac{x-2y}{r}) + 6f(x) \\ &= f(x+2y) + f(x-2y) + 6f(x) \,, \end{aligned}$$

Dong Seung Kang

for all $x, y \in X$, that is, the equation (1.4) satisfies the equation (1.3). The remains of proof follow from [7, Theorem 2.1].

LEMMA 2.2. Let X and Y be real vector spaces. If an odd function $f: X \to Y$ satisfies the functional equation (1.3) and f(2x) = 8f(x), for all $x \in X$, then f is cubic.

Proof. Letting x = 2x in the equation (1.3), we have

$$f(2x+2y) + f(2x-2y) + 6f(2x) = 4f(2x+y) + 4f(2x-y).$$

Since f(2x) = 8f(x), for all $x \in X$, we get

$$8f(x+y) + 8f(x-y) + 48f(x) = 4f(2x+y) + 4f(2x-y),$$

that is, it satisfies the equation (1.2), as desired.

3. Hyers-Ulam-Rassias stability

Throughout in this section, let X be a normed vector space with norm $|| \cdot ||$ and Y be a Banach space with norm $|| \cdot ||$. For the given odd mapping $f: X \to Y$, we define

$$(3.1) \quad Df(x_1, \cdots, x_n) := r^3 f(\frac{\sum_{j=1}^{n-1} x_j + 2x_n}{r}) + r^3 f(\frac{\sum_{j=1}^{n-1} x_j - 2x_n}{r}) \\ + 8 \sum_{j=1}^{n-1} f(x_j) - 2f(\sum_{j=1}^{n-1} x_j) - 4 \sum_{j=1}^{n-1} \left(f(x_j + x_n) + f(x_j - x_n) \right),$$

for all $x_1, \cdots, x_n \in X$.

THEOREM 3.1. Let $n \geq 2$ be an integer number, let |r| < 1, and let $f: X \to Y$ be an odd mapping for which there exists a function $\phi: X^n \to [0, \infty)$ such that

(3.2)
$$\tilde{\phi}(x_1,\cdots,x_n) := \sum_{j=0}^{\infty} r^{3j} \phi(\frac{x_1}{r^j},\cdots,\frac{x_n}{r^j}) < \infty,$$

(3.3)
$$\| Df(x_1,\cdots,x_n) \| \le \phi(x_1,\cdots,x_n) ,$$

and

$$||f(2x) - 8f(x)|| \le \delta$$

40

for all $x_1, \dots, x_n, x \in X$ and for some $\delta \ge 0$. Then for every $m \in \{1, 2, \dots, n-1\}$, there exists a generalized cubic mapping $C: X \to Y$ such that

(3.4)
$$\| f(x) - C(x) \| \leq \tilde{\phi}(\underbrace{\frac{x}{m}, \cdots, \frac{x}{m}}_{m-terms}, 0, \cdots, 0),$$

for all $x \in X$.

Proof. Let $1 \le m \le n-1$ be an integer number. By setting $x_j = \frac{x}{m} (j = 1, \cdots, m)$ and $x_{m+1} = \cdots = x_n = 0$, we have

(3.5)
$$\| f(x) - r^3 f(\frac{x}{r}) \| \le \phi(\underbrace{\frac{x}{m}, \cdots, \frac{x}{m}}_{m}, 0, \cdots, 0),$$

for all $x \in X$. Replacing x by $\frac{x}{m}$ in the equation (3.5) and then multiplying by r^3 , we have

(3.6)
$$|| r^3 f(\frac{x}{r}) - r^{3 \cdot 2} f(\frac{x}{r^2}) || \le r^3 \phi(\underbrace{\frac{x}{m}, \cdots, \frac{x}{m}}_{m}, 0, \cdots, 0),$$

for all $x \in X$. Now, combining equations (3.5) and (3.6), we get

$$\| f(x) - r^{3 \cdot 2} f(\frac{x}{r^2}) \| \leq \phi(\underbrace{\frac{x}{m}, \cdots, \frac{x}{m}}_{m}, 0, \cdots, 0)$$

+ $r^3 \phi(\underbrace{\frac{x}{m \cdot r}, \cdots, \frac{x}{m \cdot r}}_{m}, 0, \cdots, 0),$

for all $x \in X$. Continue this way, we may have

(3.7)
$$|| f(x) - r^{3 \cdot j} f(\frac{x}{r^j}) || \le \sum_{k=0}^{j-1} r^{3 \cdot k} \phi(\underbrace{\frac{x}{m \cdot r^k}, \cdots, \frac{x}{m \cdot r^k}}_{m}, 0, \cdots, 0),$$

for all positive integer j and all $x \in X$. Dividing the equation (3.7) by $r^{3 \cdot s}$ and then substituting x by $\frac{x}{r^s}$, we have

$$r^{3 \cdot s} \parallel f(\frac{x}{r^s}) - r^{3 \cdot j} f(\frac{x}{r^{j+s}}) \parallel$$

$$\leq r^{3 \cdot s} \sum_{k=0}^{j-1} \cdot r^{3 \cdot k} \phi(\underbrace{\frac{x}{m \cdot r^{k+s}}, \cdots, \frac{x}{m \cdot r^{k+s}}}_{m}, 0, \cdots, 0),$$

Dong Seung Kang

for all $x \in X$.

By taking $s \to \infty$, we may conclude that $\{r^{3 \cdot j}f(\frac{x}{r^j})\}$ is a Cauchy sequence in a Banach space Y. This implies that the sequence $\{r^{3 \cdot j}f(\frac{x}{r^j})\}$ converges. Hence we can define a function $C: X \to Y$ by

$$C(x) = \lim_{j \to \infty} r^{3 \cdot j} f(\frac{x}{r^j}) \,,$$

for all $x \in X$. Then

$$\| DC(x_1, \cdots, x_n) \| = \lim_{k \to \infty} r^{3 \cdot k} \| Df(\frac{x_1}{r^k}, \cdots, \frac{x_n}{r^k}) \|$$

$$\leq \lim_{k \to \infty} r^{3 \cdot k} \phi(\frac{x_1}{r^k}, \cdots, \frac{x_n}{r^k})$$

$$= 0,$$

for all $x_1, \dots, x_n \in X$. That is, $DC(x_1, \dots, x_n) = 0$. Obviously, we have C is odd and C(2x) = 8C(x), for all $x \in X$. Corollary 2.2 implies that the function $C: X \to Y$ is a cubic mapping.

It only remains to show that the function C is unique. Let $C': X \to Y$ be another generalized cubic function satisfying the equation (3.4). Then

$$\begin{split} ||C(x) - C'(x)|| &= r^{3k} ||C((\frac{1}{r})^k x) - C'((\frac{1}{r})^k x)|| \\ &\leq r^{3k} \Big(||C((\frac{1}{r})^k x) - f((\frac{1}{r})^k x)|| + ||C'((\frac{1}{r})^k x) - f((\frac{1}{r})^k x)|| \Big) \\ &\leq 2 \cdot r^{3k} \, \tilde{\phi}((\frac{1}{r})^k x, (\frac{1}{r})^k x, 0 \cdots, 0) \\ &= 2 \cdot r^{3k} \sum_{j=0}^{\infty} r^{3j} \phi((\frac{1}{r})^{j+k} x, (\frac{1}{r})^{j+k} x, 0, \cdots, 0) \\ &= 2 \cdot \sum_{j=k}^{\infty} r^{3j} \phi((\frac{1}{r})^j x, (\frac{1}{r})^j x, 0, \cdots, 0) \to 0 \,, \end{split}$$

for all $x \in X$. As $r \to \infty$, we can conclude that C(x) = C'(x), for all $x \in X$; that is, C is unique.

COROLLARY 3.2. Let r > 1, and let θ and p < 3 be positive real numbers (Or, let r < 1, and let θ and p > 3 be positive real numbers).

42

Let $f: X \to Y$ be a function such that

$$||Df(x_1, \cdots, x_n)|| \le \theta \sum_{i=1}^n ||x_i||^p$$
,

for all $x_1, \cdots, x_n \in X$. Then there exists a unique generalized cubic mapping $C: X \to Y$ such that

$$||f(x) - C(x)|| \le \frac{m\theta}{r^{3-p} - 1} ||x||^p$$
,

for all $x \in X$, and for any $1 \le m \le n-1$.

Proof. Define $\phi(x_1, \dots, x_n) = \theta \sum_{i=1}^n ||x_i||^p$, and apply to Theorem 3.1.

THEOREM 3.3. Let $n \geq 2$ be an integer number, let |r| > 1, and let $f: X \to Y$ be a mapping for which there exists a function $\phi: X^n \to [0, \infty)$ such that

(3.8)
$$\tilde{\phi}(x_1, \cdots, x_n) := \sum_{j=1}^{\infty} r^{-3j} \phi(r^j x_1, \cdots, r^j x_n) < \infty,$$

(3.9)
$$\| Df(x_1,\cdots,x_n) \| \leq \phi(x_1,\cdots,x_n),$$

and

$$||f(2x) - 8f(x)|| \le \delta$$

for all $x_1, \dots, x_n, x \in X$ and for some $\delta \ge 0$. Then for every $m \in \{1, 2, \dots, n-1\}$, there exists a generalized cubic mapping $C: X \to Y$ such that

(3.10)
$$\| f(x) - C(x) \| \leq \tilde{\phi}(\underbrace{\frac{x}{m}, \cdots, \frac{x}{m}}_{m-terms}, 0, \cdots, 0),$$

for all $x \in X$.

Proof. If x is replaced by rx and dividing by r^3 in the equation (3.5) in the proof of Theorem 3.1, we have the following equation

(3.11)
$$|| f(x) - \frac{1}{r^3} f(rx) || \le \frac{1}{r^3} \phi(\underbrace{\frac{r}{m} x, \cdots, \frac{r}{m} x}_{m}, 0, \cdots, 0),$$

for all $x \in X$. The remains of the proof are similar to the proof of Theorem 3.1.

Dong Seung Kang

COROLLARY 3.4. Let r > 1, and let θ and p > 3 be positive real numbers (Or, let r < 1, and let θ and p < 3 be positive real numbers). Let $f : X \to Y$ be a function such that

$$||Df(x_1, \cdots, x_n)|| \le \theta \sum_{i=1}^n ||x_i||^p$$
,

for all $x_1, \dots, x_n \in X$. Then there exists a unique generalized cubic mapping $C: X \to Y$ such that

$$||f(x) - C(x)|| \le m\theta \cdot \frac{r^{p-3}}{r^{3-p}-1} ||x||^p,$$

for all $x \in X$, and for any $1 \le m \le n-1$.

Proof. Define $\phi(x_1, \dots, x_n) = \theta \sum_{i=1}^n ||x_i||^p$, and apply to Theorem 3.3.

References

- P. W. Cholewa, Remarks on the stability of functional equations, Aequationes. Math. 27 (1984), 576–86.
- [2] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64.
- [3] Z. Gajada, On the stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431–434.
- [4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
- [5] D. H. Hyers, On the stability of the linear equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [6] K.-W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867–878.
- [7] K.-W. Jun and H.-M. Kim, On the Hyers-Ulam-Rassias stability of a general cubic functional equation, Math. Inequal. App., 6 (2003), 289–302.
- [8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264–284.
- [10] Th. M. Rassias, P. Šemrl On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325–338.
- [11] Th. M. Rassias, K. Shibata, Variational problem of some quadratic functions in complex analysis, J. Math. Anal. Appl. 228 (1998), 234–253.
- [12] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Semin. Mat. Fis. Milano 53 (1983) 113–129.
- [13] S. M. Ulam, Problems in Morden Mathematics, Wiley, New York (1960).

Department of Mathematics Education Dankook University Seoul, 140-714, Republic of Korea *E-mail*: dskang@dankook.ac.kr

*