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GENERALIZED CUBIC MAPPINGS OF r− TYPE
IN SEVERAL VARIABLES

Dong Seung Kang*

Abstract. Let X, Y be vector spaces. In this paper, we investigate
the generalized Hyers-Ulam-Rassias stability problem for a cubic
function f : X → Y satisfies

r3f(

∑n−1
j=1 xj + 2xn

r
) + r3f(

∑n−1
j=1 xj − 2xn

r
) + 8

n−1∑
j=1

f(xj)

= 2f(

n−1∑
j=1

xj) + 4

n−1∑
j=1

(
f(xj + xn) + f(xj − xn)

)

for all x1, · · · , xn ∈ X .

1. Introduction

The study of stability problems for functional equations is related to
the following question originated by Ulam [13] concerning the stability
of group homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·) .
Given ε > 0 does there exist a δ > 0 such that if a mapping h : G1 → G2

satisfies the inequality

d(h(xy), h(x)h(y)) < δ

for all x, y ∈ G1 , then a homomorphism H : G1 → G2 exists with
d(h(x), H(x)) < ε for all x ∈ G1 ?

The first partial solution to Ulam’s question was provided by D. H.
Hyers [5]. Let X and Y are Banach spaces with norms ‖ · ‖ and ‖ · ‖ ,
respectively. Hyers showed that if a function f : X → Y satisfies the
following inequality

‖ f(x + y)− f(x)− f(y) ‖≤ ε
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for all ε ≥ 0 and for all x, y ∈ X , then the limit

a(x) = lim
n→∞ 2−nf(2nx)

exists for each x ∈ X and a : X → Y is the unique additive function
such that

‖ f(x)− a(x) ‖≤ ε

for any x ∈ X . Moreover, if f(tx) is continuous in t for each fixed x ∈ X ,
then a is linear.

Hyers’s theorem was generalized in various directions. In particular,
Th. M. Rassias [8] and Z. Gajda [3] considered a generalized version
of the theorem of Hyers which permitted the Cauchy difference to be-
come unbounded. They proved the following theorem by using a direct
method: if a function f : X → Y satisfies the following inequality

‖ f(x + y)− f(x)− f(y) ‖≤ θ(‖ x ‖p + ‖ x ‖p)

for some θ ≥ 0 , 0 ≤ p < 1 , and for all x, y ∈ X , then there exists a
unique additive function such that

‖ f(x)− a(x) ‖≤ 2θ

2− 2p
‖ x ‖p

for all x ∈ X . Moreover, if f(tx) is continuous in t for each fixed x ∈ X ,
then a is linear. Gǎvruta [4] generalized the Rassias’s result above.

The quadratic function f(x) = cx2 (c ∈ R) satisfies the functional
equation

f(x + y) + f(x− y) = 2f(x) + 2f(y) .(1.1)

This question is called the quadratic functional equation, and every so-
lution of the equation (1.1) is called a quadratic function.

A Hyers-Ulam stability theorem for the quadratic functional equation
(1.1) was first proved by Skof [12] for functions f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [1] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an
abelian group. In [2], Czerwik proved the Hyers-Ulam-Rassias stability
of the quadratic functional equation. Several functional equations have
been investigated; see [9], [10], and [11].

The cubic function f(x) = cx3 (c ∈ R) satisfies the functional equa-
tion

(1.2) f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x) .

We promise that by a cubic function we mean every solution of the
equation (1.2) is called a cubic function. The equation (1.2) was solved
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by Jun and Kim [6]. Also, they proved the generalized Hyers-Ulam-
Rassias stability problem for the given functional equation : see [7]

(1.3) f(x + 2y) + f(x− 2y) + 6f(x) = 4f(x + y) + 4f(x− y) .

Throughout this paper, we assume that r(r3 6= 1) is a real number
and n ≥ 2 is an integer number.

In this paper, for all x1, · · · , xn ∈ X the following odd functional
equation f : X → Y such that

(1.4) r3f(

∑n−1
j=1 xj + 2xn

r
) + r3f(

∑n−1
j=1 xj − 2xn

r
) + 8

n−1∑

j=1

f(xj)

= 2f(
n−1∑

j=1

xj) + 4
n−1∑

j=1

(
f(xj + xn) + f(xj − xn)

)

is a solution of the equation (1.3) and then investigate the generalized
Hyers-Ulam-Rassias stability in Banach spaces.

2. Generalized cubic mappings of r−type in several variables

Lemma 2.1. Let X and Y be real vector spaces. If an odd function
f : X → Y satisfies the functional equation (1.4), then there exists
functions B : X ×X ×X → Y and A : X → Y such that

B(x, y, z) =
1
24

[f(x+ y + z)+ f(x− y− z)− f(x+ y− z)− f(x− y + z)]

is symmetric for each fixed one variable and additive for each two vari-
ables and A is additive.

Proof. Since f is odd, we have f(0) = 0 . Now, setting x1 = x , xn =
y , and xj = 0 (j = 2, · · · , n− 1) , we write

(2.1) r3f(
x + 2y

r
) + r3f(

x− 2y

r
) + 6f(x) = 4f(x + y) + 4f(x− y) ,

for all x, y ∈ X . By letting y = 0 , we have

r3f(
x

r
) = f(x) ,

for all x ∈ X . Thus we may conclude that

4f(x + y) + 4f(x− y) = r3f(
x + 2y

r
) + r3f(

x− 2y

r
) + 6f(x)

= f(x + 2y) + f(x− 2y) + 6f(x) ,
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for all x, y ∈ X , that is, the equation (1.4) satisfies the equation (1.3).
The remains of proof follow from [7, Theorem 2.1].

Lemma 2.2. Let X and Y be real vector spaces. If an odd function
f : X → Y satisfies the functional equation (1.3) and f(2x) = 8f(x) ,
for all x ∈ X , then f is cubic.

Proof. Letting x = 2x in the equation (1.3), we have

f(2x + 2y) + f(2x− 2y) + 6f(2x) = 4f(2x + y) + 4f(2x− y) .

Since f(2x) = 8f(x) , for all x ∈ X , we get

8f(x + y) + 8f(x− y) + 48f(x) = 4f(2x + y) + 4f(2x− y) ,

that is, it satisfies the equation (1.2), as desired.

3. Hyers-Ulam-Rassias stability

Throughout in this section, let X be a normed vector space with
norm || · || and Y be a Banach space with norm ‖ · ‖ . For the given odd
mapping f : X → Y , we define

(3.1) Df(x1, · · · , xn) := r3f(

∑n−1
j=1 xj + 2xn

r
) + r3f(

∑n−1
j=1 xj − 2xn

r
)

+8
n−1∑

j=1

f(xj)− 2f(
n−1∑

j=1

xj)− 4
n−1∑

j=1

(
f(xj + xn) + f(xj − xn)

)
,

for all x1, · · · , xn ∈ X .

Theorem 3.1. Let n ≥ 2 be an integer number, let |r| < 1 , and
let f : X → Y be an odd mapping for which there exists a function
φ : Xn → [0,∞) such that

(3.2) φ̃(x1, · · · , xn) :=
∞∑

j=0

r3jφ(
x1

rj
, · · · ,

xn

rj
) < ∞ ,

(3.3) ‖ Df(x1, · · · , xn) ‖≤ φ(x1, · · · , xn) ,

and

||f(2x)− 8f(x)|| ≤ δ
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for all x1, · · · , xn, x ∈ X and for some δ ≥ 0 . Then for every m ∈
{1, 2, · · · , n − 1} , there exists a generalized cubic mapping C : X → Y
such that

(3.4) ‖ f(x)− C(x) ‖≤ φ̃(
x

m
, · · · ,

x

m︸ ︷︷ ︸
m−terms

, 0, · · · , 0) ,

for all x ∈ X .

Proof. Let 1 ≤ m ≤ n − 1 be an integer number. By setting xj =
x
m (j = 1, · · · ,m) and xm+1 = · · · = xn = 0 , we have

(3.5) ‖ f(x)− r3f(
x

r
) ‖≤ φ(

x

m
, · · · ,

x

m︸ ︷︷ ︸
m

, 0, · · · , 0) ,

for all x ∈ X . Replacing x by x
m in the equation (3.5) and then multi-

plying by r3 , we have

(3.6) ‖ r3f(
x

r
)− r3·2f(

x

r2
) ‖≤ r3φ(

x

m
, · · · ,

x

m︸ ︷︷ ︸
m

, 0, · · · , 0) ,

for all x ∈ X . Now, combining equations (3.5) and (3.6), we get

‖ f(x)− r3·2f(
x

r2
) ‖ ≤ φ(

x

m
, · · · ,

x

m︸ ︷︷ ︸
m

, 0, · · · , 0)

+ r3φ(
x

m · r , · · · ,
x

m · r︸ ︷︷ ︸
m

, 0, · · · , 0) ,

for all x ∈ X . Continue this way, we may have

(3.7) ‖ f(x)− r3·jf(
x

rj
) ‖≤

j−1∑

k=0

r3·kφ(
x

m · rk
, · · · ,

x

m · rk︸ ︷︷ ︸
m

, 0, · · · , 0) ,

for all positive integer j and all x ∈ X .
Dividing the equation (3.7) by r3·s and then substituting x by x

rs , we
have

r3·s ‖ f(
x

rs
)− r3·jf(

x

rj+s
) ‖

≤ r3·s
j−1∑

k=0

·r3·kφ(
x

m · rk+s
, · · · ,

x

m · rk+s︸ ︷︷ ︸
m

, 0, · · · , 0) ,
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for all x ∈ X .

By taking s → ∞ , we may conclude that {r3·jf( x
rj )} is a Cauchy

sequence in a Banach space Y. This implies that the sequence {r3·jf( x
rj )}

converges. Hence we can define a function C : X → Y by

C(x) = lim
j→∞

r3·jf(
x

rj
) ,

for all x ∈ X . Then

‖ DC(x1, · · · , xn) ‖ = lim
k→∞

r3·k ‖ Df(
x1

rk
, · · · ,

xn

rk
) ‖

≤ lim
k→∞

r3·kφ(
x1

rk
, · · · ,

xn

rk
)

= 0 ,

for all x1, · · · , xn ∈ X . That is, DC(x1, · · · , xn) = 0 . Obviously, we
have C is odd and C(2x) = 8C(x) , for all x ∈ X . Corollary 2.2 implies
that the function C : X → Y is a cubic mapping.

It only remains to show that the function C is unique. Let C ′ : X →
Y be another generalized cubic function satisfying the equation (3.4).
Then

||C(x)− C ′(x)|| = r3k||C((
1
r
)kx)− C ′((

1
r
)kx)||

≤ r3k
(
||C((

1
r
)kx)− f((

1
r
)kx)||+ ||C ′((

1
r
)kx)− f((

1
r
)kx)||

)

≤ 2 · r3k φ̃((
1
r
)kx, (

1
r
)kx, 0 · · · , 0)

= 2 · r3k
∞∑

j=0

r3jφ((
1
r
)j+kx, (

1
r
)j+kx, 0, · · · , 0)

= 2 ·
∞∑

j=k

r3jφ((
1
r
)jx, (

1
r
)jx, 0, · · · , 0) → 0 ,

for all x ∈ X . As r → ∞ , we can conclude that C(x) = C ′(x) , for all
x ∈ X ; that is, C is unique.

Corollary 3.2. Let r > 1 , and let θ and p < 3 be positive real
numbers (Or, let r < 1 , and let θ and p > 3 be positive real numbers).
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Let f : X → Y be a function such that

||Df(x1, · · · , xn)|| ≤ θ
n∑

i=1

||xi||p ,

for all x1, · · · , xn ∈ X . Then there exists a unique generalized cubic
mapping C : X → Y such that

||f(x)− C(x)|| ≤ mθ

r3−p − 1
||x||p ,

for all x ∈ X , and for any 1 ≤ m ≤ n− 1 .

Proof. Define φ(x1, · · · , xn) = θ
∑n

i=1 ||xi||p , and apply to Theo-
rem 3.1.

Theorem 3.3. Let n ≥ 2 be an integer number, let |r| > 1 , and let
f : X → Y be a mapping for which there exists a function φ : Xn →
[0,∞) such that

(3.8) φ̃(x1, · · · , xn) :=
∞∑

j=1

r−3jφ(rjx1, · · · , rjxn) < ∞ ,

(3.9) ‖ Df(x1, · · · , xn) ‖≤ φ(x1, · · · , xn) ,

and

||f(2x)− 8f(x)|| ≤ δ

for all x1, · · · , xn, x ∈ X and for some δ ≥ 0 . Then for every m ∈
{1, 2, · · · , n − 1} , there exists a generalized cubic mapping C : X → Y
such that

(3.10) ‖ f(x)− C(x) ‖≤ φ̃(
x

m
, · · · ,

x

m︸ ︷︷ ︸
m−terms

, 0, · · · , 0) ,

for all x ∈ X .

Proof. If x is replaced by rx and dividing by r3 in the equation (3.5)
in the proof of Theorem 3.1, we have the following equation

(3.11) ‖ f(x)− 1
r3

f(rx) ‖≤ 1
r3

φ(
r

m
x, · · · ,

r

m
x

︸ ︷︷ ︸
m

, 0, · · · , 0) ,

for all x ∈ X . The remains of the proof are similar to the proof of
Theorem 3.1.
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Corollary 3.4. Let r > 1 , and let θ and p > 3 be positive real
numbers (Or, let r < 1 , and let θ and p < 3 be positive real numbers).
Let f : X → Y be a function such that

||Df(x1, · · · , xn)|| ≤ θ

n∑

i=1

||xi||p ,

for all x1, · · · , xn ∈ X . Then there exists a unique generalized cubic
mapping C : X → Y such that

||f(x)− C(x)|| ≤ mθ · rp−3

r3−p − 1
||x||p ,

for all x ∈ X , and for any 1 ≤ m ≤ n− 1 .

Proof. Define φ(x1, · · · , xn) = θ
∑n

i=1 ||xi||p , and apply to Theo-
rem 3.3.
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[12] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Semin. Mat.
Fis. Milano 53 (1983) 113–129.

[13] S. M. Ulam, Problems in Morden Mathematics, Wiley, New York (1960).



Generalized cubic mappings of r− type 45

*
Department of Mathematics Education
Dankook University
Seoul, 140-714, Republic of Korea
E-mail : dskang@dankook.ac.kr


