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THE GENERALIZATION OF CLEMENT’S
THEOREM ON PAIRS OF PRIMES

HEeoNnsOOG LEE* AND YEONYONG PARK

ABSTRACT. In this article, we show a generalization of Clement’s theorem on the
pair of primes. For any integers n and k, integers n and n + 2k are a pair of
primes if and only if 2k(2k)![(n — 1)! 4 1] + ((2k)! — 1)n = 0 (mod n{n + 2k))
whenever (n, (2k)!) = (n + 2k, (2k}!) = 1. Especially, n or n + 2k is a composite
number, a pair {n,n + 2k), for which 2k(2k){{(n — D!+ 1] + ((2k)! = 1)n = 0
(mod n(n + 2k)) is called a pair of pseudoprimes for any positive integer k. We
have pairs of pseudorimes (n,n + 2k) with n < 5 x 10 for each positive integer
k(4 < k < 10).
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1. Introduction

For every even number 2k are there infinitely many pairs of consecutive primes
which differ by 2k? That is conjectured by Polignac(1849). When k = 1, this
is the famous twin prime conjecture. For a positive integer k, we define pairs of
primes with difference 2k between primes as follows.

Definition 1.1. Let p, be the n-th prime number. A pair of primes (py, pp, + 2k)
is called a cousin ([sexy], [octy]) prime for an integer k = 2([k = 3|, [k = 4]).
If pr41 = pn + 2k then a pair of primes (py, pn+1) called a consecutive pair of
primes. A consecutive pair of primes is called a consecutive cousin ([sexy], [octy])
prime when an integer k = 2([k = 3], [k = 4]).

If (pn,pn + 2k) is a consecutive pair of primes then it is a pair of primes.
Generally, the inverse is not true.
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For example, pairs of primes (7,11),(13,17),(19,23),---, (739,743), - are
cousin primes and also consecutive cousin primes. Because there is no three
primes of the form pn, p, + 2, pn + 4 apart from 3, 5, 7. Pairs of primes (5, 11},
(7,13), (11,17), -, (751,757), - -- are sexy primes but not consecutive sexy
primes. (23,29), (31,37), (47,53), ---, (727,733), - - - are sexy primes and also
consecutive sexy primes. Pairs of primes (3,11), (5,13), (11,19) and (71,79)
are octy primes but not consecutive octy primes. On the other hand (89, 97),
(359, 367), (389,397) and (491, 499) are consecutive octy primes.

2. The counting function 3 2x(x).

Define the counting function s 9x(z) of pairs of primes (pn, p, + 2k) by

mo k() =f{p <z | (b, p+ 2k) € Poor}, (2.2)

where Pj o is the set of all pairs of primes with difference 2k. The function
Lig or(x) which was introduced by Hardy and Littlewood can be an approxima-
tion to mo,2x(z) as £ — oo by the following asymptotic formula([1]).

p—1

ma,9k(2) ~ Lig px(x) = 2 /z~—df—- Y
2,2’6 22,2kw - 02 2 (lnt)2 p_2$

p>2,plk

where ¢y = . H (1 - —(I-)—_l—i—)—é) = (0.660161815846870 - - -.
<peEP
Define the counting function 7 5, () of pairs of primes (pn, pn+1) With ppi1 =
"S 2k(2) = H{pn <z | (PnsPns1) € P“;Zk}v
where P3,, is the set of all pairs (pn, pri1(= pn + 2k)) of consecutive primes
with difference 2k.
Approximating functions Li} 4(z), Li3¢(x) and Lij g(z), which are formu-
lated by Lee and Park([2], [3]), approximate to 75 4(z), 75 ¢(x) and 73 () as
z - oo by the following asymptotic formulas.

* o ] z dt
m3,4(x) ™ Liz 4(z) = 202/ W (21)

ma.6(x) ~ Liy ¢(x) = 402/2 i t)2 / (lnt)3 (2.2)

- ma8(x) & Lizg(x)

Y o [T 4t 21 [® dt
_ o9 _a 2 9 93
202/2 (nt)? 22“3/2, g T 2641; (Int)t (2.3)
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2 3
where c3 = [ | 5’(-@“1—?;) = 0.635166334604271 - and eg = [ % £ (p 4 =
5<p P ) 5<p<:<x>
0.307494878758327 - - - . Lee and Park([2], [3]) counted 7§ ,(7x10%) = 161805194
75 (7 X 10'%) = 204161183 and 73 ¢(7 x 10%) = 133295081 using several dozens
of personal computers, code written in Pascal and the algorithm employed the
classic sieve of Eratosthenes to carry out an exhaustive generation and enumer-
ation of the primes. Also, Lee and Park([2], [3]) computed Lij o(< 7 x 10'0) =
161797059.8, Li} ¢(7 x 10'0) = 204182628.5 and Lij (7 x 10'°) = 133284728.6.

3. The generalization of Clement’s theorem on pairs of primes

Fermat discovered a theorem about 1640 which is known as Fermat’s Theo-

rem*([4]).
Theorem 3.1 (Fermat). Let p be a prime and a be any integer. Then
a? =a {mod p).
If a is not divisible by p, then
a®'=1 (mod p). (3.1)

Fermat’s Little Theorem is the basis for many other results in Number Theory
and is the basis for methods of checking whether numbers are prime which are
still in use on today’s electronic computers. Using the classical congruence (3.1)
of Fermat, Wilson discovered the following theorem([5]}.

Theorem 3.2(Wilson). If an integer n > 1 is o prime then
(n—1Dt4+1=0 (mod n). (3.2)

Moreover, the converse of Wilson’s theorem is true. Indeed, if n > 1 is a natural

number that is not a prime, then n = st, with 1 < s,t < n — 1, so s divides n
and (n — 1)}, and therefore (n — 1)1 = —1 (mod n). So Wilson’s theorem gives a
characterization of prime number. A characterization of twin primes {n,n + 2)
is given by Clement([6]).

Theorem 3.3(Clement). The integers n and n+ 2 are a pair of primes if end

only if
4[(n-!+1]4+n=0 (modn(n+2).

*Fermat’s Little Theorem
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The following theorem is a generalization of Clement’s theorem on the pair
of primes with difference 2k between primes.

Theorem 3.4 (Generalization of Clement’s theorem). Let n and k be positive
integers. For any positive integer k, integers n. and n + 2k are a pair of primes
if and only if

22K [(n— 1!+ 1]+ (2k)! = 1)n=0 (mod n(n + 2k)), (3.3)
whenever (n, (2k)!) = (n + 2k, (2k)!) = 1.

Remark 3.5. The case k = 1 in (3.3) is Clement’s theorem. Substituting 2 for k
in (3.3), integers n and n-+4 are cousin primes if and only if 96[(n—1)1+1]+23n =
0 (mod n(n + 4)), whenever (n,24) = (n+4,24) = 1. The case k = 3 in (3.3),
integers n and n + 6 are sexy primes if and only if 4320[(n — 1)! + 1]+ 719n =0
(mod n(n + 6)), whenever (n,720) = (n +6,720) = 1.

The Proof of Theorem 8.4. If n and n + 2k are primes, then
(n—=1)1+1=0 (modn) (3.4)

and
m+2k~-1)14+1=0 (modn+2k) (3.5)

by Wilson’s theorem. Using elementary calculations, it follows that

n+2%-D=n+2k-1)(n+2k—-2)- - (n+2k -2k + 1))!
= (-1)(~2) - (-2k)(n — 1)! (mod n + 2k)

= (=1)2%(2k))(n — 1)! (mod n + 2k)
= (2k)(n — 1)! (mod n + 2k).
Hence we have '
(n+2k—-1) = (2k){(n—1)! (mod n+ 2k). (3.6)

By (3.5) and (3.6), (2k){(n — 1)l +1 =0 (mod n + 2k), so
2E)(n — 1)+ 1 = t(n + 2k) 3.1
for some integer £. Therefore we get

(k) (n— 1)1 +1 =2kt (mod n).
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Since (n — 1)! = —1 (mod n) in (3.4), it follows that
—(2k)! +1=2kt (mod n). (3.8)
Multiplying (3.7) by 2k,
2k(2k) (n — D) + 2k = 2kt(n + 2k). (3.9)
By (3.8) and (3.9), we have
2k(2k)!(n— 1)1+ 2k = (1 — 2k)))(n+2k) (mod n(n + 2k)).
Hence, we have ,
2k [(n — D1+ 1]+ ((2k)! - Dn =0 (mod n(n + 2k)).
Conversely, let the congruence be satisfied. Since
2k2EN[(n =D+ 1]+ (k) ~1n=0 (mod n),

we can easily deduce that (n — 1)! + 1 = 0 (mod n) because n and (2k)! are
relatively primes. And so, n is a prime by Wilson’s theorem. Secondarily, it

holds that
2E2EN[(n — !+ 1]+ ((2k)! -~ 1)n =0 (mod n + 2k).
By using equality,

2k(2K)! {n — DT+ 1] + ((2k)! — L)n
= 2k(2k)!(n — 1)V + ((2K)! — 1)(n + 2k) + 2k,
it follows that
26(2K) (n — 1)1+ 2k =0 (mod n + 2k). (3.10)
Set A=(n+2k—1)(n+2k—2)(n+2k—-3)(n+2k—4)---(n+1)n. Then we
get
A= (n+2k)(n+2k-2)(n+2k-3)(n+2k~4)-- - (n+1)n
~(n+2k—-2)(n+2k-3)(n+2k—4)---(n+1)n
= (n+2k)n+2k—-2)(n+2k-3)(n+2k~4)---(n+1)n
—(n+2k)(n+2k-3)n+2k-4) --(n+1)n
+2(n+2k)(n+2k—4)---(n+1)n
—-2x3(n+2k)(n+2k—5)--(n+1)n

- (2k— ).
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The last term in the above equality is —(2k — 1)ln = —(2k — 1){(n + 2k) +
2k(2k — 1)! and so we have A = 2k(2k — 1)! (mod n + 2k). Multiplying by 4 in
the both sides of the congruence (3.10), we have

2k(2k) (n + 2k — 1) + (2k)(2k) (2k — 1)! = 2k(2k)}[(n+ 2k — 1)1 + 1]
=0 (mod n + 2k).

Since (2k)! and n + 2k are relatively prime, it follows that (n +2k—1)!+1=0
(mod n + 2k). And so, n + 2k is also a prime by Wilson’s theorem. [

When 4 < k, the condition (n,(2k)!) = (n + 2k,(2k)!) = 1 in theorem
3.4. seems to be essential. For instance, if 322560[(n ~ 1)! + 1] + 40319n = 0
(mod n(n + 8)) then (n,n+ 8) is a pair of primes? Generally, it is not true. For
n < 5 x 104, the pais of integers (9,17), (15,23),(21,29),(35,43), (45,53), (63,71)
and (105,113) are not prime pairs when k& = 4. In the case k = 5(respectively
k = 6), the pais of integers (9,19), (27,37),(63,73),(189,199), (567,577),(63,71)
and (105,113} (respectively (25,37), (35,47),(55,67),(77,89) and (385,397)) are
not satisfied.

Definition 3.6. Let n and k be positive integers and let n or n + 2k be a
composite number. A pair {n,n + 2k), for which :

2k(2K)[(n— 1)1 + 1]+ ((26)! = 1)n =0 (mod n(n + 2k)) (3.11)

is called a pair of pseudoprimes.

Unfortunately, the huge value of the factorial makes (3.11) of few practical
use to find pair of large prime with difference 2k between primes. To find pairs
of pseudoprimes (n,n+ 2k) with n < 5 x 10* for some positive integer k, the fol-
lowing results ware calculated by Mathematica 4.1. We are only concerned with
the primality test and modular in the number theory package of Mathematica

4.1([7)).

(1) k = 4 : There are only seven pairs of pseudoprimes as follows. (9,17},
(15,23), (21,29), (35,43), (45,53), (63,71) and (105,113)

(2) k=5 : There are only six pairs of pseudoprimes as follows. (9,19), (21
31), (27,37), (63,73), (189,199) and (567,577)

(3) k& = 6 : There are only five pairs of pseudoprimes as follows. (25 37,
(35,47), (55,67), (77,89) and (385,397)

(4) k =7 : There are 37 pairs of pseudoprimes as follows. (9, 23), (15, 29),
(27, 41), (33, 47), (39, 53), (45, 59), (65, 79), (75, 89), (99, 113), (117,
131), (135, 149), (143, 157), (165, 179), (225, 239), (243, 257), (297, 311),
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(6)

(7)
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(405, 419), (429, 443), (495, 509), (585, 599), (825, 839), (1215, 1229),
(1287, 1301), (1485, 1499), (2025, 2309), (2673, 2687), (2025, 2939),
(5265, 5279), (6075, 6089), (6435, 6449), (10725, 10739), (11583, 11597),
(15795, 15809), (19305, 19319), (26325, 26339), (32175, 32189), (34749,
34763)

k = 8 : There are 76 pairs of pseudoprimes as follows. (15, 31), (21, 37),
(27, 43), (45, 61), (55, 71), (63, 79), (81, 97), (91, 107), (135, 151), (147,
163), (165, 181), (175, 191), (195, 211), (225, 241), (297, 313), (315, 331),
(351, 367), (385, 401), (405, 421), (441, 457), (525, 541), (585, 601), (637,
653), (675, 691), (693, 709), (735, 751), (891, 907), (975, 991), (1053,
1069), (1155, 1171), (1215, 1231), (1287, 1303), (1365, 1381), (2145,
2161), (2205, 2221), (2457, 2473), (2673, 2689), (2695, 2711), (2835,
2851), (3003, 3019), (3375, 3391), (3675, 3691), (3861, 3877), (4095,
4111), (5005, 5021), (5103, 5119), (5265, 5281), (5733, 5749), (5775,
5791), (6075, 6091), (6435, 6451), (6825, 6841), (8085, 8101), (8505,
8521), (10125, 10141), (11907, 11923), (12285, 12301), (12375, 12391),
(13365, 13381), (15015, 15031), (17325, 17341), (17875, 17891), (19845,
19861), (22113, 22129), (22275, 22291), (27027, 27043), (30375, 30391),
(32175, 32191), (33075, 33091), (34125, 34141), (35035, 35051), (36855,
36871), (40095, 40111), (43875, 43891), (45045, 45061), (47775, 47791)

k = 9 : There are 35 pairs of pseudoprimes as follows. (25, 43), (35,
53), (49, 67), (55, 73), (65, 83), (85, 103), (91, 109), (119, 137), (175,
193), (221, 239), (245, 263), (275, 293), (539, 557), (595, 613), (715, 733),
(935, 953), (1001, 1019), (1105, 1123), (1309, 1327), (2125, 2143), (2275,
2293), (2695, 2713), (3185, 3198), (3575, 3593), (5005, 5023), (6125,
6143), (6545, 6563), (7735, 7753), (9163, 9181), (9625, 9643), (10829,
10843), (11375, 11393), (35035, 35053), (38675, 38693), (45815, 45833)

k = 10: There are 90 pairs of pseudoprimes as follows. (9, 29),(21, 41),
(27, 47), (33, 53), (39, 59), (51, 71), (63, 83), (77, 97), (81, 101), (117,
137), (119, 139), (143, 163), (153, 173), (171, 191), (209, 229), (221, 241),
(231, 251), (243, 263), (273, 203), (207, 317), (399, 419), (429, 449), (441,
461), (459, 479), (567, 587), (627, 647), (663, 683), (741, 761), (819, 839),
(833, 853), (891, 911), (1001, 1021), (1071, 1091), (1197, 1217), (1287,
1307), (1463, 1483), (1539, 1559), (1547, 1567), (1617, 1637), (1701,
1721), (1881, 1901), (1911, 1931), (2079, 2099), (2187, 2207), (2223,
2243), (2261, 2281), (2457, 2477), (2673, 2693), (2907, 2927), (3003,
3023), (3861, 3881), (3927, 3947), (3969, 3989), (4199, 4219), (4389,
4409), (4617, 4637), (4851, 4871), (5967, 5987), (6237, 6257), (6561,
6581), (6669, 6689), (6783, 6803), (7007, 7027), (7497, 7517), (8019,
8039), (8151, 8171), (8721, 8741), (9009, 9029), (9477, 9497), (11781,
11801), (11907, 11927), (12393, 12413), (13167, 13187), (15309, 15329),
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[

~3 Ch O

(15561, 15581), (17901, 17921), (18711, 18731), (20349, 20369), (22113,
22133), (22491, 22511), (24057, 24077), (24453, 24473), (26163, 26183),
(27489, 27509), (32487, 32507), (35343, 35363), (37179, 37199), (39501,
39521), (46683, 46703), (47481, 47501)
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