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GENERALIZED FIBONACCI AND LUCAS NUMBERS OF
THE FORM wxz? AND wa? F 1

REFIK KESKIN

ABSTRACT. Let P > 3 be an integer and let (Un) and (V5,) denote gen-
eralized Fibonacci and Lucas sequences defined by Ug = 0,U; = 1;
Vo = 2,Vi = P, and Upq1 = PUp — Up—1, Vpt1 = PV, — Vg for
n > 1. In this study, when P is odd, we solve the equations V;, = kz? and
Vp, = 2kz? with k | P and k > 1. Then, when k | P and k > 1, we solve
some other equations such as U, = kx2,U, = 2kz2,U, = 3kz2,V, =
kx? F1,Vy, = 2kz? 71, and Up, = kz? T 1. Moreover, when P is odd, we
solve the equations Vi, = wz2+1 and V;, = wz? — 1 for w = 2,3, 6. After
that, we solve some Diophantine equations.

1. Introduction

Let P and @ be nonzero integers. Generalized Fibonacci sequence (U,) and
Lucas sequence (V;,) are defined by Up(P,Q) = 0,U1(P,Q) = 1; Vo(P,Q) =
2,Vi(P,Q) = P, and Up1(P,Q) = PU(P,Q) + QUo—r(P,Q), Vusa (P.Q) =
PV, (P,Q) + QV,—1(P,Q) for n > 1. Up(P,Q) and V,(P,Q) are called n-th
generalized Fibonacci number and n-th generalized Lucas number, respectively.
Generalized Fibonacci and Lucas numbers for negative subscripts are defined
as U_n(P,Q) = —(—Q) "U,(P,Q) and V_,,(P,Q) = (—Q) "V,(P, Q), respec-
tively.

Now assume that P? 4 4Q # 0. Then it is well known that

an_ﬁn

(1) U, =Un(P,Q) = and V,, = V,,(P,Q) = a™ + 8",

, which are the roots of the charac-

P+4/P244Q and § = P—/P244Q
- 2

where a = 5
teristic equation z?> — Px — Q = 0.
The above formulas are known as Binet’s formulas. Since

Un(7P7Q) = (71)”71UH(P,Q) and Vn(7P7Q) = (71)nVH(P7Q)a
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it will be assumed that P > 1. Moreover, we will assume that P? 4+ 4Q > 0.
For P = Q = 1, we have classical Fibonacci and Lucas sequences (F},) and
(Lp). For P =2 and @ = 1, we have Pell and Pell-Lucas sequences (P,) and
(Qn). For more information about generalized Fibonacci and Lucas sequences
one can consult [4, 10, 11, 12].

Generalized Fibonacci and Lucas numbers of the form kz? have been investi-
gated since 1962. When P is odd and @ = F1, by using elementary argument,
many authors solved the equations U, = kx? or V,, = ka? for specific integer
values of k. The reader can consult [17] for a brief discussion of this subject.
When P and @ are relatively prime odd integers, in [13], the authors solved
U, = 22,U,, = 222, V,, = 22,V,, = 22%. Moreover, under the same assumption,
in [15], the same authors solved U,, = 3z% and they solved V,, = kz? under
some assumptions on k.

In [2], when P is odd, Cohn solved the equations V,, = Pz? and V,, =
2Px? with Q = F1. When P is odd, in [17], the authors solved the equation
Vo(P,1) = ka? for k | P with k > 1. In this study, when P is odd, we will
solve the equations V,,(P,—1) = ka? and V,,(P,—1) = 2ka? for k | P with
k > 1. Then, when k | P with k& > 1, we will solve some other equations such as
Un(P,—1) = ka?, U, (P, —1) = 2ka?, U, (P, —1) = 3ka?, V,,(P,—1) = ka® F 1,
Vo(P,—1) = 2kz? 1, and U,,(P,—1) = kz?> ¥ 1. When P is odd, we will solve
the equations V,,(P,—1) = wz? + 1 and V,,(P,—1) = waz? — 1 for w = 2, 3,6.
Thus we solve some Diophantine equations.

We will use the Jacobi symbol throughout this study. Our method is elemen-
tary and used by Cohn, Ribenboim and McDaniel in [2] and [15], respectively.

2. Preliminaries

From now on, sometimes, instead of U, (P,—1) and V,,(P,—1), we will use
U, and V,,, respectively. Moreover, we will assume that P > 3. The following
lemmas can be proved by induction.

Lemma 2.1. Ifn is a positive integer, then Va, = F2 (mod P?) and Va, 11 =
(2n +1)P(—=1)" (mod P?).

Lemma 2.2. Ifn is a positive integer, then Us, = n(—1)""1P (mod P?) and
Uznt1 = (—=1)" (mod P?).

The following lemma is given in [13] and [15].

Lemma 2.3. (%) =1 forr>1.

The following lemma is a consequence of a theorem given in [6].

Lemma 2.4. All positive integer solutions of the equation 3z> — 2y? = 1 are
given by (z,y) = (U,(10,-1) = U,,—1(10, —1), U, (10, —1) + Up,—1 (10, —1)) with
n>1.

The following theorems are well known (see [3, 5, 8, 9]).
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Theorem 2.5. All positive integer solutions of the equation x?>—(P?—4)y? = 4
are given by (x,y) = (Vo (P, —1), U, (P, —1)) with n > 1.

Theorem 2.6. All positive integer solutions of the equation x> — Pxy+y> =1
are given by (x,y) = (Un(P,—1),Un—1(P,—1)) with n > 1.

The proofs of the following two theorems are given in [16].

Theorem 2.7. Let n € NU{0}, m, r € Z and m be a nonzero integer. Then

(2) Uspnsr = Uy, (mod Uy,)

and

(3) Vomnir =V, (mod U,,).

Theorem 2.8. Let n € NU{0} and m, r € Z. Then

(1) Usmntr = (—1)" Uy (mod Vi)

and

(5) Vamnir = (<1 V;(mod V).
When P is odd, since 8 | Us, using (3) we get

(6) Vog+r =V, (mod 8).

Thus

(7) 44 V,.

Moreover, an induction method shows that
Vor =7 (mod 8)
and thus

(8) (VQ) 1

for r > 1.
When P is odd, it is seen that

(9) (;;) =1

for r > 1.
Secondly, we give some identities concerning generalized Fibonacci and Lu-
cas numbers:

U_p=-Up,and V_, = V,,
(10) Usnt1 — 1 =UpViy1,
(11) U2n = Unvna

(12) Von = V2 — 2,
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(13) Usp = Up (P> =) U2 +3) = U, (V2 = 1) = Up(Van + 1),
(14) Van = Va(Vi} = 3) = Vi (Van — 1),

(15) If Pisodd, then 2 |V, & 2| U, < 3| n,

(16) Vi (P?—4)U? =4.

Let m = 2%k, n = 2%, k and [ odd, a,b> 0, and d = (m,n). Then

(17) (Un,Un) = Uy,
(18) (U, Vo) = { 1 Zﬁ 2 ificfl a>£’b.

If P is odd and r > 2, then Vor = —1 (mod P22*3) and thus
w5
(20) If r > 1, then Vor = F2 (mod P).

(21) If r > 2, then Vor =2 (mod P).

If 31 P, then 3 | Us. Thus we get
(22) 3|U,=3|n
by (2) and Var = —1 (mod 3) and therefore

(23) (Vi) =1

for r > 1.
If 3| P and P is odd, then Var = —1 (mod 3) for r > 2 and thus

(24) (é) =1

for r > 2. Moreover, we have

P-1 P+1
2 = =1
& (%)= (%)
for r > 1.
Identities in between (11)—(16) and (17)—(18) can be found in [12, 15, 16]

and [7, 14, 15], respectively. The proofs of the others are easy and will be
omitted.
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3. Main theorems
From now on, we will assume that n is a positive integer and P is odd.
Lemma 3.1. Let m > 1 be odd. Then Va,, + 1 = 222 has no solutions.

Proof. Assume that Va,, + 1 = 22 for some integer x. Let 2m = 2(4q¢ F 1) =
2(2"a F 1) with a odd and r > 2. Thus

20 = Vo +1=1-Vo = —(P> - 3) (mod Var)
by (5), which implies that

pP? —
.TQE—( 23) (mod Var).

This shows that
(P?—3)/2
26 A i RS
(26) ("2
which is impossible by (19). O

Theorem 3.2. If V,, = ka? for some k | P with k > 1, then n = 1.

Proof. Assume that V,, = kx? for some k | P with k& > 1. Then by Lemma
2.1, it is seen that n is odd. Let n = 6¢q + r with » € {1,3,5}. Then by (6),
Vi, = Vog+r =V, (mod 8) and therefore V,, = V1, V3, V5 (mod 8). It is seen that
V, = P,6P (mod 8). Then kz? = P,6P (mod 8). Let P = kM. Thus, we get
kMax? = PM,6PM (mod 8), which implies that Pz? = PM,6PM (mod 8).
This shows that 2> = M,6M (mod 8) since P is odd. Therefore M = 1
(mod 8) since M is odd. Now assume that n > 1. Thenn = 4¢F1=2""laF 1
with @ odd and r > 1. Since V,, = ka2, we get

kx? =V, = -Vg = —P  (mod Var)
by (5). This shows that
2> =—-M (mod Var),
which implies that

(@)()-

By using the fact that M =1 (mod 8), we get

()-C)-(3)-

by (20). Since (\;Tl) = —1by (9), we get (;21) (‘ZIT) = —1, which contradicts

(27). Therefore n = 1. O

We can give the following corollary by using Theorems 2.5 and 3.2.
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Corollary 3.3. The only positive integer solution of the equation P2x*—(P?—
4)y* =4 is (z,y) = (1,1).

Theorem 3.4. If V,, = 2ka? for some k | P with k > 1, then n = 3.

Proof. Assume that V,, = 2kz? for some k | P with & > 1. Then 3 | n and
n is odd by (15) and Lemma 2.1. Let n = 3m with m odd. Then 2kz? =
Vo = Vam = Viu(V2 — 3) by (14) and thus (V,,,/k)(V,2 — 3) = 222. Since
(Vin, V2 —3) =1 or 3, we get V.2 — 3 = wa? for some w € {1,2,3,6}. Since
V2 —3 = Vay, — 1, it is seen that Va,, — 1 = wa?. Assume that m > 1. Then
m=4qF 1 =2"a F 1 with a odd and r > 2. Thus,

wa? = Vo —1=-1-Veg=—-1—(P*-2)=—(P?*—1) (mod Var).

This shows that
w\ [—1 P?2—1
Vor | \ Var Var ’

By using (8), (23), and (24), it can be seen that (%) =1 for w = 2,3,6.
Moreover, (‘;Ti) = —1 and (P;;l) =1 by (9) and Lemma 2.3, respectively.
Thus, we get
-1\ [(P>-1
1= w = = —1,
Var Var Var
which is impossible. Therefore m = 1 and thus, n = 3. O

We can give the following corollary easily.
Corollary 3.5. The equation 4P%z* — (P? —4)y? = 4 has no integer solutions.

Proof. Assume that 4P2x* — (P? — 4)y? = 4 for some positive integer z and y.
Then by Theorems 2.5 and 3.4, we get V3 = 2Px2. This shows that 2Pxz? =
P(P? — 3), which implies that P? — 222 = 3. But this is impossible. O

Now we give some known theorems from [13], which will be useful for solving
the equations U,, = kz?,U,, = 2kx?, and U,, = 3kz?, where k | P with k > 1.
We use a theorem from [1] while solving V,, = 222,

Theorem 3.6. If V,, = 22 for some integer x, then n = 1. If V,, = 222 for
some integer x, then n = 3, P = 3,27.

Theorem 3.7. If U, = z? for some integer x, thenn =1 orn=2, P=0 or
n==6,P=3. IfU, = 222 for some integer =, then n = 3.

Theorem 3.8. Let P > 3 be odd. If U, = ka? for some k | P with k > 1,
thenn =2 orn==6 and 3 | P.

Proof. Assume that U,, = ka2 for some k | P with k > 1. Then by Lemma 2.2,
n is even and therefore n = 2m for some positive integer m. Thus, kx? = U,, =
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Uzm = U Vin. Assume that m is even. Then we get (U, /k)Vy, = 22. In this
case, since (Up, Vi) = 1 or 2, by (18) either

(28) U,, = ku? and V,,, = 02,
or
(29) U, = 2ku? and V,,, = 202

for some integers u and v. Since m is even, the identities (28) and (29) are
impossible by Theorem 3.6. Now assume that m is odd. In this case, either

(30) Up = u? and V, = kv?,
or
(31) U = 2u? and V;,, = 2kv?

for some integers v and v. If (30) is satisfied, then m = 1 by Theorem 3.7 and
therefore n = 2. Assume that (31) is satisfied. Then m = 3 by Theorems 3.4
and 3.7. Thus n = 6. In which case, it can be seen that if Us = UsVz = ka? for
some k | P with k > 1, then 3 | P. O

Corollary 3.9. The equation P2x* — P?2%y + y2 = 1 has only the positive
solution (x,y) = (1,1).

Proof. Assume that P2z — P222y 4 32 = 1 for some positive integers = and
y. Then Pz? = U, or Px? = Ug by Theorems 2.6 and 3.8. It can be seen that
Pz? = Us is impossible. Therefore Pz? = U, and thus y = U; = 1. This shows
that (x,y) = (1,1). O

Theorem 3.10. If k | P with k > 1, then U, = 2kz?* has no solutions.

Proof. Assume that U,, = 2kx2. Then n = 6m for some positive integer m by
Lemma 2.2 and (15). Thus, we get U,, = Usy, = Uz Vay = 2ka?, which implies
that (Usm/k)(Vam/2) = 22 or (Vam/2k)Usm = 22. Since (Usp, Vam) = 2 and
44 Vs, by (7), we get either

(32) Uspm = ku? and Va,, = 20°
or
(33) Vam = 2ku? and Us,, = v?

for some integers v and v. But (32) is impossible by Theorems 3.6 and 3.8.
Moreover (33) is impossible by Theorems 3.4 and 3.7. O

Corollary 3.11. The equations 4P%x* —2P22%y +y? = 1 and 2? — 4P?(P? —
4)y* = 4 have no integer solutions.

Theorem 3.12. Let k | P with k > 1. If 3 { P, then U, = 3ka? has no
solutions.
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Proof. Assume that U, = 3kz?. Since 3 { P, we get n = 3m for some even
integer m by (22) and Lemma 2.2. Thus, 3kx? = Uz, = Uy, (Vam + 1) by (13),
which implies that (Uy,/k)(Vam + 1) = 322. Since (Uy,/k, Vo +1) = 1 or 3
by (13), it follows that Va,, + 1 = wu? for some w € {1,3}. Since m is even,
m = 2"a with a odd and 7 > 1. Thus wu? = Va,, +1 = 1-V (mod Var) by (5),

which implies that wu? = —1 (mod V). This is impossible since %) =-1

by (9) and (%) =1 by (23). O

Corollary 3.13. The equations 9P%x* — 3P%2x?y +y? =1 and x? — 9P?(P? —
4)y* = 4 have no integer solutions.

Theorem 3.14. If k | P with k > 1, then the equation V,, = kx® + 1 has no
solutions.

Proof. Assume that V;, = k2% + 1 for some integer z. Then by Lemma 2.1, n
is even. Let n = 2m. If m is even, then we get n = 4w, which implies that
V, =2 (mod Us) by (3). Therefore k2% +1 =2 (mod P), which is impossible
since k | P and k > 1. Thus, m is odd. Since Vo, = V2 — 2 by (12), we get
kx? +1 = V2 — 2, which implies that k | 3 by Lemma 2.1 and therefore k = 3.
Since k = 3, we see that 3 | P. Assume that m > 1. Then m = 4¢F 1 = 2"a
F1 with @ odd and r > 2. So, 322+ 1=V, = Va,, = —Vao (mod Var) by (5).
This shows that 322 = —(P2 — 1) (mod Var). That is, 322 = —U3z (mod Var).
Thus, by using Lemma 2.3, (9), and (24), we get

o =(@)-(E- @) )

which is impossible. Therefore m = 1 and thus, n = 2. So, 322 +1 =V, =
P? — 2, which is impossible. O

Corollary 3.15. The equation (Px? +1)? — (P? — 4)y? = 4 has no solutions.

Theorem 3.16. If k | P with k > 1, then the equation U, = kxz* + 1 has only
the solution n = 1.

Proof. Assume that U,, = kx? + 1 for some integer . Then by Lemma 2.2, n
is odd. Let n = 2m + 1. Assume that m > 0. By using (10), we get ka? =
Usm+1 — 1 = Uy Vipg1. Assume that m is odd. Then by (18), (Up, Ving1) = 1.
Thus U,, = kiu? and V11 = kev? with k1ky = k. This is impossible by
Theorems 3.2 and 3.8, since k1 > 1 or k3 > 1. Now assume that m is even. Then
(Upn, Vin+1) = P by (18). Thus it follows that U, = k1 Pu? and V,,, 11 = ko Pv?
with kjke = k. This is impossible by Theorem 3.2. Therefore m = 0 and thus
n=1. (I

Corollary 3.17. The equations (Pz?® + 1) — P(P2®> + 1)y +y> = 1 and
22 — (P? — 4)(Py? 4+ 1) = 4 have no positive integer solutions.
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By using the fact that Usyq1 + 1 = Upyy1Vin, we can give the following
theorem easily.

Theorem 3.18. If k | P with k > 1, then the equation U,, = kxz* — 1 has only
the solution n = 3.

If P =3, then V; = 47 = 322 — 1 has solution = 4. Now we give the
following theorem.

Theorem 3.19. If k | P with k > 1, then the equation V,, = kx? — 1 has only
the solution (n, P, k,x) = (4,3,3,4).

Proof. Assume that V,, = kx? — 1 for some integer 2. Then by Lemma 2.1, n is
even. Let n = 2m. Then k2% —1 =V, = Va,,, = V.2 —2 by (12). Assume that m
is odd. Then P | V,, by Lemma 2.1, which implies that k | 1, a contradiction.
Therefore m is even and thus n = 4u, which shows that k2?2 — 1 =V, = 2
(mod Uz) by (3). This shows that k& = 3 and therefore 3 | P. In this case we
have n = 4u = 2(2"a) for some odd integer a with r > 1 and thus, 322 —1 = —2
(mod Var) by (5). This shows that 322 = —1 (mod Var). Therefore

() - (=)

which is impossible if » > 2 by (24). Therefore r = 1. Then n = 4u with u
odd. Thus, 322 — 1 = Vy,, = V2, — 2, which implies that V2, — 1 = 322. That
is, (Vay — 1)(Vau + 1) = 322, Let (Va, — 1, Va, + 1) = 1. Then we have either

(35) Vau —1 =a? and Vo, + 1 = 3b?
or
(36) Vau — 1 =3a” and Vo, + 1 =0?

for some integers a and b. It can be seen that (35) and (36) are impossible.
Let (Va, — 1, Vo, + 1) = 2. Then we have

(37) Vau — 1 =2a? and Vo, + 1 = 6b°
or
(38) Vou — 1 = 6a? and Vo, + 1 = 2b°

for some integers a and b. It can be shown that (37) is impossible. If u > 1,
then (38) is impossible by Lemma 3.1. Therefore u = 1 and so n = 4. Thus
V4 = 322—1 and therefore V2 —2 = 3z%—1. This implies that (P?—2)?—32% = 1.
Since all positive integer solutions of the equation u? — 3v? = 1 are given by
(u,v) = (Vn(4,-1)/2,Up(4,—1)) with n > 1, we get

Va(4,-1)

2

for some natural number n. Thus, V;,(4, —1) = 2P? — 4, which shows that n
is even. Let n = 2m. Then 2P? — 4 = V,,,(4,—1) = V.2(4,—1) — 2. For the
time being, we use V,, instead of V,,(4,—1). If m is even, then m = 2t and

pP?_9=



1050 REFIK KESKIN

so (V2 —2)?2 —2 = 2P? — 4. This shows that V;* —4V;? + 6 = 2P?, which is
impossible since V; is even. Therefore m is odd. Assume that m > 1. Then
n=2m=24¢F1) =2(2"aF1) with a odd and r > 2. Thus,

2P? — 4=V, =-Vo=-14 (mod Vi),
which implies that
(39) P?= -5 (mod Va-/2).

A simple computation shows that Vor/2 =1 (mod 4) and Var /2 =2 (mod 5).
Thus, we obtain

5\ (5N (Y2 _ (2 __,
Vor/2)  \Var/2)  \ 5 ) \5) 7
which is impossible by (39). Therefore m = 1 and thus n = 2. This implies

that 2P? — 4 = V,(4,—1) = V2(4,—1) = 14. Hence we get P = 3. Since
(P? —2)? — 322 = 1, it follows that © = 4. This completes the proof. O

We can give the following corollary easily.
Corollary 3.20. The only positive integer solutions of the equation (Px? —

1)?2 — (P? — 4)y? = 4 is given by (P, z,y) = (3,4,21).

Theorem 3.21. The equation V,, = 32> — 1 has the solutions
(n, P,z) = (4,3,4), (n, P,x) = (1,3a*> — 1,a)

with a even or (n, P,x) = (2,Va:(4,—1)/2,U2(4,—1)) with t > 1.

Proof. If 3 | P, then by Theorem 3.19, we get (n, P, k,x) = (4,3,3,4). Assume
that 31 P. Let n > 1 be odd. Then n = 4¢F 1 = 2"1b F 1 with b odd and
r > 1. Thus,

302 =V, +1=-Vi+1=—(P—-1) (mod Vo)
by (5). By using (23), (9), and (25), it is seen that

() () (5

which is impossible. Therefore n = 1. And so, P = 3a® — 1 with a even. Now
let n be even. Then n = 2m for some positive integer m. Assume that m > 1
and m is odd. Then n = 2m = 2(4¢ F 1) = 2(2"a F 1) with a odd and r > 2.
Thus,

302 =14V, =1-Vo = —(P*-3) (mod Vi),
by (5). By using (23), (9), and (19), we get

()@

which is a contradiction. Therefore m = 1 and son = 2. Thus 322 — 1=V, =
P? — 2 and this implies that P? — 322 = 1. Therefore P = V&;(4,—1)/2 with
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t > 1. Assume that m is even. Then n = 4u = 2"+t'b with b odd and r > 1.
This implies by (5) that

332 =1+V,=1-Vy=-1 (mod Vi),
which is impossible since (%) = —1 and (%) =1 by (9) and (23). O

Corollary 3.22. The equation (3x? —1)?—(P?—4)y? = 4 has integer solutions
only when P =3, P = 3a® — 1 with a even or P = Va,(4,—1)/2 with t > 1.

Theorem 3.23. Let k | P with k > 1. Then the equation V,, = 2kz?® — 1 has
no solutions.

Proof. Assume that V,, = 2kz? —1 for some integer . Then by Lemma 2.1, n is
even. Let n = 2m. Then 2k2?—1 =V,, = Va,, = V,2—2 by (12). Assume that m
is odd. Then P | V,, by Lemma 2.1, which implies that k | 1, a contradiction.
Therefore m is even and so n = 4u, which shows that 2kz? — 1 = V,, = 2
(mod Uz) by (3). This implies that & = 3 and therefore 3 | P. In this case,
we have n = 4u = 2"t!'q with @ odd and » > 1. Thus 622 — 1 = V,, = —2
(mod V). This shows that 622 = —1 (mod Var). Therefore

(@) (@) - (7))

which is impossible if » > 2 by (8) and (24). Therefore » = 1. Then n = 4u
with v odd. Thus, 622 — 1 = Vy, = Vi, — 2, which implies that V2, — 1 = 6z2.
That is, (Vay — 1)(Vay + 1) = 622. Since (Va,, — 1, V2, + 1) = 1 or 2, we have
one of the following cases:

(40) Vou — 1 = 2a” and Vo, + 1 = 3b%,
(41) Vau — 1 =a? and Va, + 1 = 6b%,
(42) Vou — 1 = 6a® and Vi, + 1 = b?,
(43) Vau — 1 = 3a® and Va, + 1 = 2b%

A simple argument shows that (40), (41), and (42) are impossible. Assume
that (43) is satisfied. Then 3a? = Vo, —1 = V2 —3 and so a® + 1 = 3(V4,/3)?,
which is impossible. (I

Corollary 3.24. The equation (2Pz? — 1)? — (P%2 — 4)y? = 4 has no integer
solutions.

Theorem 3.25. The equation V,, = 622 — 1 has the solutions
(n, P,x) = (2,V;(10,-1)/2,U(10,—1))
witht > 1 or (n, P,z) = (1,60 — 1,a) with a integer.



1052 REFIK KESKIN

Proof. If 3 | P, then the proof follows from Theorem 3.23. Assume that 31 P.
Let n > 1beodd. Thenn =4¢gF1 = 27+1p £ 1 with b odd and r > 1. Thus
we get

62° =V, +1=-Vi+1=—(P—1) (mod Var)

by (5). By using (8), (23), (9), and (25), it is seen that

() () - (@) () =

which is impossible. Therefore n = 1. And so, P = 6a? — 1 with a integer. Let
n be even, i.e., n = 2m. Assume that m > 1is odd. Then m =4¢gF1=2"bF1
with b odd and r > 2 and thus,

62° =V, +1=-Vo+1=—(P?>-3) (mod Va)

by (5). Similarly, by using (8), (9), (23), and (19), we get a contradiction.
Therefore m = 1 and so n = 2. If m is even, we get n = 2"71b with b odd and
r > 1 and thus

622 =V, +1=-Vp+1=-1 (mod Var),

which is a contradiction by (8), (9), and (23). Therefore n = 2, which implies
that P? — 622 = 1. Therefore P = V;(10,—1)/2 and x = U;(10, —1) with ¢ > 1.
Therefore P = V;(10,—1)/2 is a solution. O

Corollary 3.26. The equation (62% —1)%>—(P?—4)y? = 4 has integer solutions
only when P = 6a® — 1 with a integer or P = V,,(10,—1)/2 with m > 1.

Theorem 3.27. Let k | P with k > 1. Then the equation V,, = 2kz? + 1
has the solutions (n, P,x) = (2,3(Upn(10,—-1) — Up,—1(10, 1)), U, (10, 1) +
Upm—1(10,-1)) with m > 1.

Proof. Assume that V;, = 2kx?+1. Then n is even by Lemma 2.1. Let n = 2m.
If m is even, then we get 2kz? + 1 = V,, = 2 (mod Us), which is impossible.
Therefore m is odd. Since 2kz?+1 = V,2 —2, it follows that k | 3 and therefore
k = 3. Assume that m > 1. Then m = 4¢F1 = 2"a F 1 with a odd and r > 2.
Thus, we get

62> =V, —1=Vo, —1=-Vo—1=—(P2—1) (mod Var),

which is impossible by (8), (9), (23), and Lemma 2.3. Then m = 1 and therefore
n = 2. Thus 622 +1 = V5 = P? — 2. That is, P? — 62 = 3. Let P = 3a. Then
3a? — 222 = 1. By Lemma 2.4, we get

(a,2) = (Un(10,—-1) — U, —1(10,-1)), U,, (10, —1) + U,,—1 (10, —1))
and therefore
(n, P,x) = (2,3(Un(10, 1) — Uy, —1(10, 1)), U, (10, —=1) 4+ Upp,—1 (10, —1))
with m > 1. 0
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Corollary 3.28. The equation (2Px?+1)%—(P?—4)y? = 4 has positive integer
solutions only when P = 3(Up,(10,—1) — U,—1(10, —1)) with m > 1.

We can give the following theorems easily.
Theorem 3.29. The equation V,, = 322 + 1 has no solutions.
Theorem 3.30. The equation V,, = 622 4+ 1 has the solutions

(n, P,x) = (2,3(U;n(10,—-1) — Uy, —1(10, 1)), U, (10, = 1) + U,,,—1 (10, —1))
with m > 1.
Theorem 3.31. The equation V,, = 22% — 1 has the solutions

(n, P,x) = (2,Vn(6,-1)/2,2U,,(6,—1))

with m > 1 or (n, P,z) = (1,2a® — 1,a) with a integer.

Theorem 3.32. The equation V,, = 2x? + 1 has the solution (n,P,z) =
(1,2a% + 1, a) with a integer.

Theorem 3.33. The equation V,, = 22 +1 has the solution (n, P,x) = (1,4a%+
1,2a) with a integer.

Theorem 3.34. The equation V,, = 22 —1 has the solution (n, P,x) = (1,4a®—
1,2a) with a integer.

Corollary 3.35. The equation (32> + 1)2 — (P%2 — 4)y? = 4 has no integer
solutions.

Corollary 3.36. The equation (62 +1)? — (P? —4)y? = 4 has positive integer
solutions only when P = 3(Up,(10,—1) — U,—1(10, —1)) with m > 1.

Corollary 3.37. The equation (22> —1)? — (P2 —4)y? = 4 has positive integer
solutions only when P = 2a%—1 with a integer or P = V,,(6,—1)/2 with m > 1.

Corollary 3.38. The equation (2x? +1)? — (P2 —4)y? = 4 has positive integer
solutions only when P = 2a?+1, in which case the only solution is (z,y) = (a,1)
with a integer.
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