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GENERALIZED FIBONACCI AND LUCAS NUMBERS OF

THE FORM wx
2 AND wx

2 ∓ 1

Refi̇k Keski̇n

Abstract. Let P ≥ 3 be an integer and let (Un) and (Vn) denote gen-
eralized Fibonacci and Lucas sequences defined by U0 = 0, U1 = 1;
V0 = 2, V1 = P, and Un+1 = PUn − Un−1, Vn+1 = PVn − Vn−1 for
n ≥ 1. In this study, when P is odd, we solve the equations Vn = kx2 and
Vn = 2kx2 with k | P and k > 1. Then, when k | P and k > 1, we solve
some other equations such as Un = kx2, Un = 2kx2, Un = 3kx2, Vn =
kx2 ∓ 1, Vn = 2kx2 ∓ 1, and Un = kx2 ∓ 1. Moreover, when P is odd, we
solve the equations Vn = wx2 +1 and Vn = wx2 − 1 for w = 2, 3, 6. After
that, we solve some Diophantine equations.

1. Introduction

Let P and Q be nonzero integers. Generalized Fibonacci sequence (Un) and
Lucas sequence (Vn) are defined by U0(P,Q) = 0, U1(P,Q) = 1; V0(P,Q) =
2, V1(P,Q) = P, and Un+1(P,Q) = PUn(P,Q) + QUn−1(P,Q), Vn+1(P,Q) =
PVn(P,Q) + QVn−1(P,Q) for n ≥ 1. Un(P,Q) and Vn(P,Q) are called n-th
generalized Fibonacci number and n-th generalized Lucas number, respectively.
Generalized Fibonacci and Lucas numbers for negative subscripts are defined
as U−n(P,Q) = −(−Q)−nUn(P,Q) and V−n(P,Q) = (−Q)−nVn(P,Q), respec-
tively.

Now assume that P 2 + 4Q 6= 0. Then it is well known that

(1) Un = Un(P,Q) =
αn − βn

α− β
and Vn = Vn(P,Q) = αn + βn,

where α =
P+

√
P 2+4Q

2
and β =

P−

√
P 2+4Q

2
, which are the roots of the charac-

teristic equation x2 − Px−Q = 0.
The above formulas are known as Binet’s formulas. Since

Un(−P,Q) = (−1)n−1Un(P,Q) and Vn(−P,Q) = (−1)nVn(P,Q),
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it will be assumed that P ≥ 1. Moreover, we will assume that P 2 + 4Q > 0.
For P = Q = 1, we have classical Fibonacci and Lucas sequences (Fn) and
(Ln). For P = 2 and Q = 1, we have Pell and Pell-Lucas sequences (Pn) and
(Qn). For more information about generalized Fibonacci and Lucas sequences
one can consult [4, 10, 11, 12].

Generalized Fibonacci and Lucas numbers of the form kx2 have been investi-
gated since 1962. When P is odd and Q = ∓1, by using elementary argument,
many authors solved the equations Un = kx2 or Vn = kx2 for specific integer
values of k. The reader can consult [17] for a brief discussion of this subject.
When P and Q are relatively prime odd integers, in [13], the authors solved
Un = x2, Un = 2x2, Vn = x2, Vn = 2x2. Moreover, under the same assumption,
in [15], the same authors solved Un = 3x2 and they solved Vn = kx2 under
some assumptions on k.

In [2], when P is odd, Cohn solved the equations Vn = Px2 and Vn =
2Px2 with Q = ∓1. When P is odd, in [17], the authors solved the equation
Vn(P, 1) = kx2 for k | P with k > 1. In this study, when P is odd, we will
solve the equations Vn(P,−1) = kx2 and Vn(P,−1) = 2kx2 for k | P with
k > 1. Then, when k | P with k > 1, we will solve some other equations such as
Un(P,−1) = kx2, Un(P,−1) = 2kx2, Un(P,−1) = 3kx2, Vn(P,−1) = kx2 ∓ 1,
Vn(P,−1) = 2kx2 ∓ 1, and Un(P,−1) = kx2 ∓ 1. When P is odd, we will solve
the equations Vn(P,−1) = wx2 + 1 and Vn(P,−1) = wx2 − 1 for w = 2, 3, 6.
Thus we solve some Diophantine equations.

We will use the Jacobi symbol throughout this study. Our method is elemen-
tary and used by Cohn, Ribenboim and McDaniel in [2] and [15], respectively.

2. Preliminaries

From now on, sometimes, instead of Un(P,−1) and Vn(P,−1), we will use
Un and Vn, respectively. Moreover, we will assume that P ≥ 3. The following
lemmas can be proved by induction.

Lemma 2.1. If n is a positive integer, then V2n ≡ ∓2 (mod P 2) and V2n+1 ≡
(2n+ 1)P (−1)n (mod P 2).

Lemma 2.2. If n is a positive integer, then U2n ≡ n(−1)n+1P (mod P 2) and
U2n+1 ≡ (−1)n (mod P 2).

The following lemma is given in [13] and [15].

Lemma 2.3.
(

U3

V2r

)

= 1 for r ≥ 1.

The following lemma is a consequence of a theorem given in [6].

Lemma 2.4. All positive integer solutions of the equation 3x2 − 2y2 = 1 are

given by (x, y) = (Un(10,−1)−Un−1(10,−1), Un(10,−1)+Un−1(10,−1)) with
n ≥ 1.

The following theorems are well known (see [3, 5, 8, 9]).
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Theorem 2.5. All positive integer solutions of the equation x2−(P 2−4)y2 = 4
are given by (x, y) = (Vn(P,−1), Un(P,−1)) with n ≥ 1.

Theorem 2.6. All positive integer solutions of the equation x2−Pxy+y2 = 1
are given by (x, y) = (Un(P,−1), Un−1(P,−1)) with n ≥ 1.

The proofs of the following two theorems are given in [16].

Theorem 2.7. Let n ∈ N∪{0} , m, r ∈ Z and m be a nonzero integer. Then

(2) U2mn+r ≡ Ur (mod Um)

and

(3) V2mn+r ≡ Vr (mod Um).

Theorem 2.8. Let n ∈ N∪{0} and m, r ∈ Z. Then

(4) U2mn+r ≡ (−1)
n
Ur (mod Vm)

and

(5) V2mn+r ≡ (−1)
n
Vr (mod Vm).

When P is odd, since 8 | U3, using (3) we get

(6) V6q+r ≡ Vr (mod 8).

Thus

(7) 4 ∤ Vn.

Moreover, an induction method shows that

V2r ≡ 7 (mod 8)

and thus

(8)

(

2

V2r

)

= 1

for r ≥ 1.
When P is odd, it is seen that

(9)

(−1

V2r

)

= −1

for r ≥ 1.
Secondly, we give some identities concerning generalized Fibonacci and Lu-

cas numbers:

U−n = −Un and V−n = Vn,

(10) U2n+1 − 1 = UnVn+1,

(11) U2n = UnVn,

(12) V2n = V 2
n − 2,
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(13) U3n = Un((P
2 − 4)U2

n + 3) = Un(V
2
n − 1) = Un(V2n + 1),

(14) V3n = Vn(V
2
n − 3) = Vn(V2n − 1),

(15) If P is odd, then 2 | Vn ⇔ 2 | Un ⇔ 3 | n,

(16) V 2
n − (P 2 − 4)U2

n = 4.

Let m = 2ak, n = 2bl, k and l odd, a, b ≥ 0, and d = (m,n). Then

(17) (Un, Um) = Ud,

(18) (Um, Vn) =

{

Vd if a > b,
1 or 2 if a ≤ b.

If P is odd and r ≥ 2, then V2r ≡ −1 (mod P 2
−3

2
) and thus

(19)

(

(P 2 − 3)/2

V2r

)

=

(

P 2 − 3

V2r

)

= 1.

(20) If r ≥ 1, then V2r ≡ ∓2 (mod P ).

(21) If r ≥ 2, then V2r ≡ 2 (mod P ).

If 3 ∤ P, then 3 | U3. Thus we get

(22) 3 | Un ⇔ 3 | n

by (2) and V2r ≡ −1 (mod 3) and therefore

(23)

(

3

V2r

)

= 1

for r ≥ 1.
If 3 | P and P is odd, then V2r ≡ −1 (mod 3) for r ≥ 2 and thus

(24)

(

3

V2r

)

= 1

for r ≥ 2. Moreover, we have

(25)

(

P − 1

V2r

)

=

(

P + 1

V2r

)

= 1

for r ≥ 1.
Identities in between (11)–(16) and (17)–(18) can be found in [12, 15, 16]

and [7, 14, 15], respectively. The proofs of the others are easy and will be
omitted.
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3. Main theorems

From now on, we will assume that n is a positive integer and P is odd.

Lemma 3.1. Let m > 1 be odd. Then V2m + 1 = 2x2 has no solutions.

Proof. Assume that V2m + 1 = 2x2 for some integer x. Let 2m = 2(4q ∓ 1) =
2(2ra∓ 1) with a odd and r ≥ 2. Thus

2x2 = V2m + 1 ≡ 1− V2 ≡ −(P 2 − 3) (mod V2r )

by (5), which implies that

x2 ≡ −
(

P 2 − 3

2

)

(mod V2r ).

This shows that

(26)

(

(P 2 − 3)/2

V2r

)

= −1

which is impossible by (19). �

Theorem 3.2. If Vn = kx2 for some k | P with k > 1, then n = 1.

Proof. Assume that Vn = kx2 for some k | P with k > 1. Then by Lemma
2.1, it is seen that n is odd. Let n = 6q + r with r ∈ {1, 3, 5} . Then by (6),
Vn = V6q+r ≡ Vr (mod 8) and therefore Vn ≡ V1, V3, V5 (mod 8). It is seen that
Vn ≡ P, 6P (mod 8). Then kx2 ≡ P, 6P (mod 8). Let P = kM. Thus, we get
kMx2 ≡ PM, 6PM (mod 8), which implies that Px2 ≡ PM, 6PM (mod 8).
This shows that x2 ≡ M, 6M (mod 8) since P is odd. Therefore M ≡ 1
(mod 8) since M is odd. Now assume that n > 1. Then n = 4q∓ 1 = 2r+1a∓ 1
with a odd and r ≥ 1. Since Vn = kx2, we get

kx2 = Vn ≡ −V∓1 ≡ −P (mod V2r )

by (5). This shows that

x2 ≡ −M (mod V2r ),

which implies that

(27)

(−1

V2r

)(

M

V2r

)

= 1.

By using the fact that M ≡ 1 (mod 8), we get
(

M

V2r

)

=

(

V2r

M

)

=

(∓2

M

)

= 1

by (20). Since
(

−1

V2r

)

= −1 by (9), we get
(

−1

V2r

)(

M
V2r

)

= −1, which contradicts

(27). Therefore n = 1. �

We can give the following corollary by using Theorems 2.5 and 3.2.
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Corollary 3.3. The only positive integer solution of the equation P 2x4−(P 2−
4)y2 = 4 is (x, y) = (1, 1).

Theorem 3.4. If Vn = 2kx2 for some k | P with k > 1, then n = 3.

Proof. Assume that Vn = 2kx2 for some k | P with k > 1. Then 3 | n and
n is odd by (15) and Lemma 2.1. Let n = 3m with m odd. Then 2kx2 =
Vn = V3m = Vm(V 2

m − 3) by (14) and thus (Vm/k)(V 2
m − 3) = 2x2. Since

(Vm, V 2
m − 3) = 1 or 3, we get V 2

m − 3 = wa2 for some w ∈ {1, 2, 3, 6} . Since
V 2
m − 3 = V2m − 1, it is seen that V2m − 1 = wa2. Assume that m > 1. Then

m = 4q ∓ 1 = 2ra∓ 1 with a odd and r ≥ 2. Thus,

wa2 = V2m − 1 ≡ −1− V∓2 ≡ −1− (P 2 − 2) ≡ −(P 2 − 1) (mod V2r ).

This shows that
(

w

V2r

)

=

(−1

V2r

)(

P 2 − 1

V2r

)

.

By using (8), (23), and (24), it can be seen that
(

w
V2r

)

= 1 for w = 2, 3, 6.

Moreover,
(

−1

V2r

)

= −1 and
(

P 2
−1

V2r

)

= 1 by (9) and Lemma 2.3, respectively.

Thus, we get

1 =

(

w

V2r

)

=

(−1

V2r

)(

P 2 − 1

V2r

)

= −1,

which is impossible. Therefore m = 1 and thus, n = 3. �

We can give the following corollary easily.

Corollary 3.5. The equation 4P 2x4−(P 2−4)y2 = 4 has no integer solutions.

Proof. Assume that 4P 2x4 − (P 2 − 4)y2 = 4 for some positive integer x and y.
Then by Theorems 2.5 and 3.4, we get V3 = 2Px2. This shows that 2Px2 =
P (P 2 − 3), which implies that P 2 − 2x2 = 3. But this is impossible. �

Now we give some known theorems from [13], which will be useful for solving
the equations Un = kx2, Un = 2kx2, and Un = 3kx2, where k | P with k > 1.
We use a theorem from [1] while solving Vn = 2x2.

Theorem 3.6. If Vn = x2 for some integer x, then n = 1. If Vn = 2x2 for

some integer x, then n = 3, P = 3, 27.

Theorem 3.7. If Un = x2 for some integer x, then n = 1 or n = 2, P = � or

n = 6, P = 3. If Un = 2x2 for some integer x, then n = 3.

Theorem 3.8. Let P ≥ 3 be odd. If Un = kx2 for some k | P with k > 1,
then n = 2 or n = 6 and 3 | P.

Proof. Assume that Un = kx2 for some k | P with k > 1. Then by Lemma 2.2,
n is even and therefore n = 2m for some positive integer m. Thus, kx2 = Un =



GENERALIZED FIBONACCI AND LUCAS NUMBERS OF THE FORM 1047

U2m = UmVm. Assume that m is even. Then we get (Um/k)Vm = x2. In this
case, since (Um, Vm) = 1 or 2, by (18) either

(28) Um = ku2 and Vm = v2,

or

(29) Um = 2ku2 and Vm = 2v2

for some integers u and v. Since m is even, the identities (28) and (29) are
impossible by Theorem 3.6. Now assume that m is odd. In this case, either

(30) Um = u2 and Vm = kv2,

or

(31) Um = 2u2 and Vm = 2kv2

for some integers u and v. If (30) is satisfied, then m = 1 by Theorem 3.7 and
therefore n = 2. Assume that (31) is satisfied. Then m = 3 by Theorems 3.4
and 3.7. Thus n = 6. In which case, it can be seen that if U6 = U3V3 = kx2 for
some k | P with k > 1, then 3 | P. �

Corollary 3.9. The equation P 2x4 − P 2x2y + y2 = 1 has only the positive

solution (x, y) = (1, 1).

Proof. Assume that P 2x4 − P 2x2y + y2 = 1 for some positive integers x and
y. Then Px2 = U2 or Px2 = U6 by Theorems 2.6 and 3.8. It can be seen that
Px2 = U6 is impossible. Therefore Px2 = U2 and thus y = U1 = 1. This shows
that (x, y) = (1, 1). �

Theorem 3.10. If k | P with k > 1, then Un = 2kx2 has no solutions.

Proof. Assume that Un = 2kx2. Then n = 6m for some positive integer m by
Lemma 2.2 and (15). Thus, we get Un = U6m = U3mV3m = 2kx2, which implies
that (U3m/k)(V3m/2) = x2 or (V3m/2k)U3m = x2. Since (U3m, V3m) = 2 and
4 ∤ V3m by (7), we get either

(32) U3m = ku2 and V3m = 2v2

or

(33) V3m = 2ku2 and U3m = v2

for some integers u and v. But (32) is impossible by Theorems 3.6 and 3.8.
Moreover (33) is impossible by Theorems 3.4 and 3.7. �

Corollary 3.11. The equations 4P 2x4 − 2P 2x2y+ y2 = 1 and x2 − 4P 2(P 2 −
4)y4 = 4 have no integer solutions.

Theorem 3.12. Let k | P with k > 1. If 3 ∤ P, then Un = 3kx2 has no

solutions.
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Proof. Assume that Un = 3kx2. Since 3 ∤ P, we get n = 3m for some even
integer m by (22) and Lemma 2.2. Thus, 3kx2 = U3m = Um(V2m +1) by (13),
which implies that (Um/k)(V2m + 1) = 3x2. Since (Um/k, V2m + 1) = 1 or 3
by (13), it follows that V2m + 1 = wu2 for some w ∈ {1, 3} . Since m is even,
m = 2ra with a odd and r ≥ 1. Thus wu2 = V2m+1 ≡ 1−V0 (mod V2r ) by (5),

which implies that wu2 ≡ −1 (mod V2r ). This is impossible since
(

−1

V2r

)

= −1

by (9) and
(

3

V2r

)

= 1 by (23). �

Corollary 3.13. The equations 9P 2x4 − 3P 2x2y+ y2 = 1 and x2 − 9P 2(P 2 −
4)y4 = 4 have no integer solutions.

Theorem 3.14. If k | P with k > 1, then the equation Vn = kx2 + 1 has no

solutions.

Proof. Assume that Vn = kx2 + 1 for some integer x. Then by Lemma 2.1, n
is even. Let n = 2m. If m is even, then we get n = 4u, which implies that
Vn ≡ 2 (mod U2) by (3). Therefore kx2 + 1 ≡ 2 (mod P ), which is impossible
since k | P and k > 1. Thus, m is odd. Since V2m = V 2

m − 2 by (12), we get
kx2 + 1 = V 2

m − 2, which implies that k | 3 by Lemma 2.1 and therefore k = 3.
Since k = 3, we see that 3 | P. Assume that m > 1. Then m = 4q ∓ 1 = 2ra
∓1 with a odd and r ≥ 2. So, 3x2 + 1 = Vn = V2m ≡ −V∓2 (mod V2r ) by (5).
This shows that 3x2 ≡ −(P 2 − 1) (mod V2r ). That is, 3x

2 ≡ −U3 (mod V2r ).
Thus, by using Lemma 2.3, (9), and (24), we get

(34) 1 =

(

3

V2r

)

=

(−U3

V2r

)

=

(−1

V2r

)(

U3

V2r

)

= −1,

which is impossible. Therefore m = 1 and thus, n = 2. So, 3x2 + 1 = V2 =
P 2 − 2, which is impossible. �

Corollary 3.15. The equation (Px2 + 1)2 − (P 2 − 4)y2 = 4 has no solutions.

Theorem 3.16. If k | P with k > 1, then the equation Un = kx2 + 1 has only

the solution n = 1.

Proof. Assume that Un = kx2 + 1 for some integer x. Then by Lemma 2.2, n
is odd. Let n = 2m + 1. Assume that m > 0. By using (10), we get kx2 =
U2m+1 − 1 = UmVm+1. Assume that m is odd. Then by (18), (Um, Vm+1) = 1.
Thus Um = k1u

2 and Vm+1 = k2v
2 with k1k2 = k. This is impossible by

Theorems 3.2 and 3.8, since k1 > 1 or k2 > 1. Now assume thatm is even. Then
(Um, Vm+1) = P by (18). Thus it follows that Um = k1Pu2 and Vm+1 = k2Pv2

with k1k2 = k. This is impossible by Theorem 3.2. Therefore m = 0 and thus
n = 1. �

Corollary 3.17. The equations (Px2 + 1)2 − P (Px2 + 1)y + y2 = 1 and

x2 − (P 2 − 4)(Py2 + 1)2 = 4 have no positive integer solutions.
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By using the fact that U2m+1 + 1 = Um+1Vm, we can give the following
theorem easily.

Theorem 3.18. If k | P with k > 1, then the equation Un = kx2 − 1 has only

the solution n = 3.

If P = 3, then V4 = 47 = 3x2 − 1 has solution x = 4. Now we give the
following theorem.

Theorem 3.19. If k | P with k > 1, then the equation Vn = kx2 − 1 has only

the solution (n, P, k, x) = (4, 3, 3, 4).

Proof. Assume that Vn = kx2− 1 for some integer x. Then by Lemma 2.1, n is
even. Let n = 2m. Then kx2−1 = Vn = V2m = V 2

m−2 by (12). Assume that m
is odd. Then P | Vm by Lemma 2.1, which implies that k | 1, a contradiction.
Therefore m is even and thus n = 4u, which shows that kx2 − 1 = Vn ≡ 2
(mod U2) by (3). This shows that k = 3 and therefore 3 | P. In this case we
have n = 4u = 2(2ra) for some odd integer a with r ≥ 1 and thus, 3x2−1 ≡ −2
(mod V2r ) by (5). This shows that 3x2 ≡ −1 (mod V2r ). Therefore

(

3

V2r

)

=

(−1

V2r

)

= −1,

which is impossible if r ≥ 2 by (24). Therefore r = 1. Then n = 4u with u
odd. Thus, 3x2 − 1 ≡ V4u = V 2

2u − 2, which implies that V 2
2u − 1 = 3x2. That

is, (V2u − 1)(V2u + 1) = 3x2. Let (V2u − 1, V2u + 1) = 1. Then we have either

(35) V2u − 1 = a2 and V2u + 1 = 3b2

or

(36) V2u − 1 = 3a2 and V2u + 1 = b2

for some integers a and b. It can be seen that (35) and (36) are impossible.
Let (V2u − 1, V2u + 1) = 2. Then we have

(37) V2u − 1 = 2a2 and V2u + 1 = 6b2

or

(38) V2u − 1 = 6a2 and V2u + 1 = 2b2

for some integers a and b. It can be shown that (37) is impossible. If u > 1,
then (38) is impossible by Lemma 3.1. Therefore u = 1 and so n = 4. Thus
V4 = 3x2−1 and therefore V 2

2 −2 = 3x2−1.This implies that (P 2−2)2−3x2 = 1.
Since all positive integer solutions of the equation u2 − 3v2 = 1 are given by
(u, v) = (Vn(4,−1)/2, Un(4,−1)) with n ≥ 1, we get

P 2 − 2 =
Vn(4,−1)

2

for some natural number n. Thus, Vn(4,−1) = 2P 2 − 4, which shows that n
is even. Let n = 2m. Then 2P 2 − 4 = V2m(4,−1) = V 2

m(4,−1) − 2. For the
time being, we use Vn instead of Vn(4,−1). If m is even, then m = 2t and
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so (V 2
t − 2)2 − 2 = 2P 2 − 4. This shows that V 4

t − 4V 2
t + 6 = 2P 2, which is

impossible since Vt is even. Therefore m is odd. Assume that m > 1. Then
n = 2m = 2(4q ∓ 1) = 2(2ra∓ 1) with a odd and r ≥ 2. Thus,

2P 2 − 4 = Vn ≡ −V2 ≡ −14 (mod V2r ),

which implies that

(39) P 2 ≡ −5 (mod V2r/2).

A simple computation shows that V2r/2 ≡ 1 (mod 4) and V2r/2 ≡ 2 (mod 5).
Thus, we obtain

( −5

V2r/2

)

=

(

5

V2r/2

)

=

(

V2r/2

5

)

=

(

2

5

)

= −1,

which is impossible by (39). Therefore m = 1 and thus n = 2. This implies
that 2P 2 − 4 = Vn(4,−1) = V2(4,−1) = 14. Hence we get P = 3. Since
(P 2 − 2)2 − 3x2 = 1, it follows that x = 4. This completes the proof. �

We can give the following corollary easily.

Corollary 3.20. The only positive integer solutions of the equation (Px2 −
1)2 − (P 2 − 4)y2 = 4 is given by (P, x, y) = (3, 4, 21).

Theorem 3.21. The equation Vn = 3x2 − 1 has the solutions

(n, P, x) = (4, 3, 4), (n, P, x) = (1, 3a2 − 1, a)

with a even or (n, P, x) = (2, V2t(4,−1)/2, U2t(4,−1)) with t ≥ 1.

Proof. If 3 | P, then by Theorem 3.19, we get (n, P, k, x) = (4, 3, 3, 4). Assume
that 3 ∤ P. Let n > 1 be odd. Then n = 4q ∓ 1 = 2r+1b ∓ 1 with b odd and
r ≥ 1. Thus,

3x2 = Vn + 1 ≡ −V1 + 1 ≡ −(P − 1) (mod V2r )

by (5). By using (23), (9), and (25), it is seen that

1 =

(

3

V2r

)

=

(−1

V2r

)(

P − 1

V2r

)

= −1,

which is impossible. Therefore n = 1. And so, P = 3a2 − 1 with a even. Now
let n be even. Then n = 2m for some positive integer m. Assume that m > 1
and m is odd. Then n = 2m = 2(4q ∓ 1) = 2(2ra∓ 1) with a odd and r ≥ 2.
Thus,

3x2 = 1 + Vn ≡ 1− V2 ≡ −(P 2 − 3) (mod V2r ),

by (5). By using (23), (9), and (19), we get

1 =

(

3

V2r

)

=

(−1

V2r

)(

P 2 − 3

V2r

)

= −1,

which is a contradiction. Therefore m = 1 and so n = 2. Thus 3x2 − 1 = V2 =
P 2 − 2 and this implies that P 2 − 3x2 = 1. Therefore P = V2t(4,−1)/2 with
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t ≥ 1. Assume that m is even. Then n = 4u = 2r+1b with b odd and r ≥ 1.
This implies by (5) that

3x2 = 1 + Vn ≡ 1− V0 ≡ −1 (mod V2r ),

which is impossible since
(

−1

V2r

)

= −1 and
(

3

V2r

)

= 1 by (9) and (23). �

Corollary 3.22. The equation (3x2−1)2−(P 2−4)y2 = 4 has integer solutions

only when P = 3, P = 3a2 − 1 with a even or P = V2t(4,−1)/2 with t ≥ 1.

Theorem 3.23. Let k | P with k > 1. Then the equation Vn = 2kx2 − 1 has

no solutions.

Proof. Assume that Vn = 2kx2−1 for some integer x. Then by Lemma 2.1, n is
even. Let n = 2m. Then 2kx2−1 = Vn = V2m = V 2

m−2 by (12). Assume thatm
is odd. Then P | Vm by Lemma 2.1, which implies that k | 1, a contradiction.
Therefore m is even and so n = 4u, which shows that 2kx2 − 1 = Vn ≡ 2
(mod U2) by (3). This implies that k = 3 and therefore 3 | P. In this case,
we have n = 4u = 2r+1a with a odd and r ≥ 1. Thus 6x2 − 1 = Vn ≡ −2
(mod V2r ). This shows that 6x

2 ≡ −1 (mod V2r ). Therefore
(

2

V2r

)(

3

V2r

)

=

(−1

V2r

)

= −1,

which is impossible if r ≥ 2 by (8) and (24). Therefore r = 1. Then n = 4u
with u odd. Thus, 6x2 − 1 = V4u = V 2

2u − 2, which implies that V 2
2u − 1 = 6x2.

That is, (V2u − 1)(V2u + 1) = 6x2. Since (V2u − 1, V2u + 1) = 1 or 2, we have
one of the following cases:

(40) V2u − 1 = 2a2 and V2u + 1 = 3b2,

(41) V2u − 1 = a2 and V2u + 1 = 6b2,

(42) V2u − 1 = 6a2 and V2u + 1 = b2,

(43) V2u − 1 = 3a2 and V2u + 1 = 2b2.

A simple argument shows that (40), (41), and (42) are impossible. Assume
that (43) is satisfied. Then 3a2 = V2u − 1 = V 2

u − 3 and so a2 +1 = 3(V2u/3)
2,

which is impossible. �

Corollary 3.24. The equation (2Px2 − 1)2 − (P 2 − 4)y2 = 4 has no integer

solutions.

Theorem 3.25. The equation Vn = 6x2 − 1 has the solutions

(n, P, x) = (2, Vt(10,−1)/2, Ut(10,−1))

with t ≥ 1 or (n, P, x) = (1, 6a2 − 1, a) with a integer.
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Proof. If 3 | P, then the proof follows from Theorem 3.23. Assume that 3 ∤ P.
Let n > 1 be odd. Then n = 4q ∓ 1 = 2r+1b ∓ 1 with b odd and r ≥ 1. Thus
we get

6x2 = Vn + 1 ≡ −V1 + 1 ≡ −(P − 1) (mod V2r )

by (5). By using (8), (23), (9), and (25), it is seen that

1 =

(

2

V2r

)(

3

V2r

)

=

(−1

V2r

)(

P − 1

V2r

)

= −1,

which is impossible. Therefore n = 1. And so, P = 6a2 − 1 with a integer. Let
n be even, i.e., n = 2m. Assume that m > 1 is odd. Then m = 4q∓1 = 2rb∓1
with b odd and r ≥ 2 and thus,

6x2 = Vn + 1 ≡ −V2 + 1 ≡ −(P 2 − 3) (mod V2r )

by (5). Similarly, by using (8), (9), (23), and (19), we get a contradiction.
Therefore m = 1 and so n = 2. If m is even, we get n = 2r+1b with b odd and
r ≥ 1 and thus

6x2 = Vn + 1 ≡ −V0 + 1 ≡ −1 (mod V2r ),

which is a contradiction by (8), (9), and (23). Therefore n = 2, which implies
that P 2 − 6x2 = 1. Therefore P = Vt(10,−1)/2 and x = Ut(10,−1) with t ≥ 1.
Therefore P = Vt(10,−1)/2 is a solution. �

Corollary 3.26. The equation (6x2−1)2−(P 2−4)y2 = 4 has integer solutions

only when P = 6a2 − 1 with a integer or P = Vm(10,−1)/2 with m ≥ 1.

Theorem 3.27. Let k | P with k > 1. Then the equation Vn = 2kx2 + 1
has the solutions (n, P, x) = (2, 3(Um(10,−1) − Um−1(10,−1)), Um(10,−1) +
Um−1(10,−1)) with m ≥ 1.

Proof. Assume that Vn = 2kx2+1. Then n is even by Lemma 2.1. Let n = 2m.
If m is even, then we get 2kx2 + 1 = Vn ≡ 2 (mod U2), which is impossible.
Therefore m is odd. Since 2kx2+1 = V 2

m−2, it follows that k | 3 and therefore
k = 3. Assume that m > 1. Then m = 4q∓ 1 = 2ra∓ 1 with a odd and r ≥ 2.
Thus, we get

6x2 = Vn − 1 = V2m − 1 ≡ −V2 − 1 ≡ −(P 2 − 1) (mod V2r ),

which is impossible by (8), (9), (23), and Lemma 2.3. Thenm = 1 and therefore
n = 2. Thus 6x2 + 1 = V2 = P 2 − 2. That is, P 2 − 6x2 = 3. Let P = 3a. Then
3a2 − 2x2 = 1. By Lemma 2.4, we get

(a, x) = (Um(10,−1)− Um−1(10,−1)), Um(10,−1) + Um−1(10,−1))

and therefore

(n, P, x) = (2, 3(Um(10,−1)− Um−1(10,−1)), Um(10,−1) + Um−1(10,−1))

with m ≥ 1. �
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Corollary 3.28. The equation (2Px2+1)2−(P 2−4)y2 = 4 has positive integer

solutions only when P = 3(Um(10,−1)− Um−1(10,−1)) with m ≥ 1.

We can give the following theorems easily.

Theorem 3.29. The equation Vn = 3x2 + 1 has no solutions.

Theorem 3.30. The equation Vn = 6x2 + 1 has the solutions

(n, P, x) = (2, 3(Um(10,−1)− Um−1(10,−1)), Um(10,−1) + Um−1(10,−1))

with m ≥ 1.

Theorem 3.31. The equation Vn = 2x2 − 1 has the solutions

(n, P, x) = (2, Vm(6,−1)/2, 2Um(6,−1))

with m ≥ 1 or (n, P, x) = (1, 2a2 − 1, a) with a integer.

Theorem 3.32. The equation Vn = 2x2 + 1 has the solution (n, P, x) =
(1, 2a2 + 1, a) with a integer.

Theorem 3.33. The equation Vn = x2+1 has the solution (n, P, x) = (1, 4a2+
1, 2a) with a integer.

Theorem 3.34. The equation Vn = x2−1 has the solution (n, P, x) = (1, 4a2−
1, 2a) with a integer.

Corollary 3.35. The equation (3x2 + 1)2 − (P 2 − 4)y2 = 4 has no integer

solutions.

Corollary 3.36. The equation (6x2+1)2− (P 2−4)y2 = 4 has positive integer

solutions only when P = 3(Um(10,−1)− Um−1(10,−1)) with m ≥ 1.

Corollary 3.37. The equation (2x2−1)2− (P 2−4)y2 = 4 has positive integer

solutions only when P = 2a2−1 with a integer or P = Vm(6,−1)/2 with m ≥ 1.

Corollary 3.38. The equation (2x2+1)2− (P 2−4)y2 = 4 has positive integer

solutions only when P = 2a2+1, in which case the only solution is (x, y) = (a, 1)
with a integer.
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