DOI QR코드

DOI QR Code

APPLICATION OF CONVOLUTION SUM ∑k=1N-1σ1(k)σ1(2nN-2nk)

  • Kim, Daeyeoul (National Institute for Mathematical Sciences) ;
  • Kim, Aeran (Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University)
  • Received : 2012.06.19
  • Accepted : 2012.08.20
  • Published : 2013.01.30

Abstract

Let $$S^{\pm}_{(n,k)}\;:=\{(a,b,x,y){\in}\mathbb{N}^4:ax+by=n,x{\equiv}{\pm}y\;(mod\;k)\}$$. From the formula $\sum_{(a,b,x,y){\in}S^{\pm}_{(n,k)}}\;ab=4\sum_{^{m{\in}\mathbb{N}}_{m<n/k}}\;{\sigma}_1(m){\sigma}_1(n-km)+\frac{1}{6}{\sigma}_3(n)-\frac{1}{6}{\sigma}_1(n)-{\sigma}_3(\frac{n}{k})+n{\sigma}_1(\frac{n}{k})$, we find the Diophantine solutions for modulo $2^{m^{\prime}}$ and $3^{m^{\prime}}$, where $m^{\prime}{\in}\mathbb{N}$.

Keywords

References

  1. J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions, Number theory for the millennium, II, (2002), 229-274.
  2. D. Kim, A. Kim, J. Kim, and H. Cho, A new approach to tree model from convolution sums of divisor functions modulo 3, Submitted.
  3. D. Kim, A. Kim, and A. Sankaranarayanan, Some properties of products of convolution sums, Submitted.
  4. K. S. Williams, Number Theory in the Spirit of Liouville, London Mathematical Society, Student Texts 76, Cambridge, (2011).