CHARACTERIZATIONS OF THE POWER FUNCTION DISTRIBUTION BY THE INDEPENDENCE OF RECORD VALUES

Se-Kyung Chang*

Abstract

In this paper, we present characterizations of the power function distribution by the independence of record values. We establish that $X \in \operatorname{POW}(1, \nu)$ for $\nu>0$, if and only if $\frac{X_{L(n)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n \geq 1$. And we prove that $X \in$ $P O W(1, \nu)$ for $\nu>0$, if and only if $\frac{X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n \geq 1$. Also we characterize that $X \in P O W(1, \nu)$ for $\nu>0$, if and only if $\frac{X_{L(n)}+X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n \geq 1$.

1. Introduction

The record values model was introduced by Chandler([4]). Suppose that X_{1}, X_{2}, \cdots is a sequence of independent and identically distributed (i.i.d.) random variables with cumulative distribution function (cdf) $F(x)$ and probability density function (pdf) $f(x)$. Let $Y_{n}=\min \left\{X_{1}, X_{2}\right.$, $\left.\cdots, X_{n}\right\}$ for $n \geq 1$. We say X_{j} is a lower record value of $\left\{X_{n}, n \geq 1\right\}$, if $Y_{j}<Y_{j-1}$ for $j>1$. By definition, X_{1} is a lower record value.

The indices at which the lower record values occur are given by the lower record times $L(n)$ for $n \geq 1$, where $L(n)=\min \{j \mid j>L(n-$ 1), $\left.X_{j}<X_{L(n-1)}, n \geq 2\right\}$ and $L(1)=1$.

A continuous random variable X is said to have the power function distribution with two parameters $\alpha>0$ and $\nu>0$ if it has a cdf $F(x)$

Received March 15, 2007.
2000 Mathematics Subject Classification: Primary 62E10; Secondary 60E05, 62G30, $62 \mathrm{H} 05,62 \mathrm{H} 10$.

Key words and phrases: record value, characterization, independence, power function distribution.
of the form

$$
\begin{equation*}
F(x)=\alpha^{-\nu} x^{\nu}, 0<x<\alpha, \alpha>0, \nu>0 . \tag{1}
\end{equation*}
$$

A notation that designates that X has the $c d f(1)$ is $X \in P O W(\alpha, \nu)$.
Some characterizations by the independence of record values are known. In [2] and [3], Ahsanullah studied, if $X \in P A R(\alpha, \beta)$ for $\alpha>0$ and $\beta>0$, then $\frac{X_{U(n)}}{X_{U(m)}}$ and $X_{U(m)}$ are independent for $0<m<n$, and if $X \in W E I(\theta, \alpha)$ for $\theta>0$ and $\alpha>0$, then $\frac{X_{U(m)}}{X_{U(n)}}$ and $X_{U(n)}$ are independent for $0<m<n$. The above result are not necessary and sufficient.

In this paper, we will give characterizations of necessary and sufficient for the power function distribution with the parameter $\alpha=1$ by the independence of the lower record values.

2. Main results

Theorem 2.1. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables with cdf $F(x)$ which is an absolutely continuous with $\operatorname{pdf} f(x)$ and $F(0)=0, F(1)=1$ and $F(x)<1$ for all $0<x<1$. Then $F(x)=x^{\nu}$ for all $0<x<1$ and $\nu>0$, if and only if $\frac{X_{L(n)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n \geq 1$.

Proof. If $F(x)=x^{\nu}$ for all $0<x<1$ and $\nu>0$, then the joint pdf $f_{(n),(n+1)}(x, y)$ of $X_{L(n)}$ and $X_{L(n+1)}$ is

$$
\begin{aligned}
f_{(n),(n+1)}(x, y) & =\frac{(H(x))^{n-1} h(x) f(y)}{\Gamma(n)} \\
& =\frac{\nu^{n+1}(-\ln x)^{n-1} y^{\nu-1}}{\Gamma(n) x}
\end{aligned}
$$

for all $0<y<x<1, \nu>0$ and $n \geq 1$.
Consider the functions $U=\frac{X_{L(n)}}{X_{L(n)}-X_{L(n+1)}}$ and $W=X_{L(n)}$. It follows that $x_{L(n)}=w, x_{L(n+1)}=\frac{(u-1) w}{u}$ and $|J|=\frac{w}{u^{2}}$. Thus we can
write the joint pdf $f_{(U),(W)}(u, w)$ of U and W as

$$
\begin{equation*}
f_{(U),(W)}(u, w)=\frac{\nu^{n+1}(u-1)^{\nu-1}(-\ln w)^{n-1} w^{\nu-1}}{\Gamma(n) u^{\nu+1}} \tag{2}
\end{equation*}
$$

for all $u>1,0<w<1, \nu>0$ and $n \geq 1$.
The marginal pdf $f_{(U)}(u)$ of U is given by

$$
\begin{align*}
f_{(U)}(u) & =\int_{0}^{1} f_{(U),(W)}(u, w) d w \tag{3}\\
& =\frac{\nu(u-1)^{\nu-1}}{u^{\nu+1}}
\end{align*}
$$

for all $u>1$ and $\nu>0$.
Also, by the above transformations, the $\operatorname{pdf} f_{(W)}(w)$ of W is the function of $X_{L(n)}$. Thus the pdf $f_{(W)}(w)$ of W is given by

$$
\begin{align*}
f_{(W)}(w) & =\frac{(H(w))^{n-1} f(w)}{\Gamma(n)} \\
& =\frac{\nu^{n}(-\ln w)^{n-1} w^{\nu-1}}{\Gamma(n)} \tag{4}
\end{align*}
$$

for all $0<w<1, \nu>0$ and $n \geq 1$.
From (2), (3) and (4), we obtain $f_{(U)}(v) f_{(W)}(w)=f_{(U),(W)}(u, w)$.
Hence $U=\frac{X_{L(n)}}{X_{L(n)}-X_{L(n+1)}}$ and $W=X_{L(n)}$ are independent for $n \geq 1$.

Now we will prove the sufficient condition. The joint pdf $f_{(n),(n+1)}(x, y)$ of $X_{L(n)}$ and $X_{L(n+1)}$ is

$$
f_{(n),(n+1)}(x, y)=\frac{(H(x))^{n-1} h(x) f(y)}{\Gamma(n)}
$$

for all $0<y<x<1, \nu>0$ and $n \geq 1$, where $H(x)=-\ln F(x)$ and $h(x)=-\frac{d}{d x}(H(x))=\frac{f(x)}{F(x)}$.

Let us use the transformations $U=\frac{X_{L(n)}}{X_{L(n)}-X_{L(n+1)}}$ and $W=X_{L(n)}$. The Jacobian of the transformations is $|J|=\frac{w}{u^{2}}$. Thus we can write the joint pdf $f_{(U),(W)}(u, w)$ of U and W as

$$
\begin{equation*}
f_{(U),(W)}(u, w)=\frac{f\left(\frac{(u-1) w}{u}\right)(H(w))^{n-1} h(w) w}{\Gamma(n) u^{2}} \tag{5}
\end{equation*}
$$

for all $u>1,0<w<1$ and $n \geq 1$.
The pdf $f_{(W)}(w)$ of W is given by

$$
\begin{equation*}
f_{(W)}(w)=\frac{(H(w))^{n-1} f(w)}{\Gamma(n)} \tag{6}
\end{equation*}
$$

for all $0<w<1$ and $n \geq 1$.
From (5) and (6), we obtain the $\operatorname{pdf} f_{(U)}(u)$ of U

$$
f_{(U)}(u)=\frac{f\left(\frac{(u-1) w}{u}\right) h(w) w}{u^{2} f(w)}
$$

for all $u>1,0<w<1$ and $n \geq 1$, where $h(x)=\frac{f(x)}{F(x)}$.
That is,

$$
f_{(U)}(u)=\frac{\partial}{\partial u}\left(F\left(\frac{(u-1) w}{u}\right) / F(w)\right) .
$$

Since U and W are independent, we must have

$$
\begin{equation*}
F\left(\frac{(u-1) w}{u}\right)=F\left(\frac{u-1}{u}\right) F(w) \tag{7}
\end{equation*}
$$

for all $u>1$ and $0<w<1$.
Upon substituting $\frac{(u-1)}{u}=u_{1}$ in (7), then we get

$$
\begin{equation*}
F\left(u_{1} w\right)=F\left(u_{1}\right) F(w) \tag{8}
\end{equation*}
$$

for all $0<u_{1}<1$ and $0<w<1$.
By the functional equations (see, [1]), the only continous solution of (8) with the boundary conditions $F(0)=0$ and $F(1)=1$ is

$$
F(x)=x^{\nu}
$$

for all $0<x<1$ and $\nu>0$.
This completes the proof.
Theorem 2.2. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables with $\operatorname{cdf} F(x)$ which is an absolutely continuous with pdf $f(x)$ and $F(0)=0, F(1)=1$ and $F(x)<1$ for all $0<x<1$. Then $F(x)=x^{\nu}$ for all $0<x<1$ and $\nu>0$, if and only if $\frac{X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n \geq 1$.

Proof. In the same manner as Theorem 2.1, we consider the functions $U=\frac{X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $W=X_{L(n)}$. It follows that $x_{L(n)}=w$, $x_{L(n+1)}=\frac{u w}{(u+1)}$ and $|J|=\frac{w}{(u+1)^{2}}$. Thus we can write the joint pdf $f_{(U),(W)}(u, w)$ of U and W as

$$
\begin{equation*}
f_{(U),(W)}(u, w)=\frac{\nu^{n+1} u^{\nu-1}(-\ln w)^{n-1} w^{\nu-1}}{\Gamma(n)(u+1)^{\nu+1}} \tag{9}
\end{equation*}
$$

for all $u>0,0<w<1, \nu>0$ and $n \geq 1$.
The marginal pdf $f_{(U)}(u)$ of U is given by

$$
\begin{equation*}
f_{(U)}(u)=\frac{\nu u^{\nu-1}}{(u+1)^{\nu+1}} \tag{10}
\end{equation*}
$$

for all $u>0$ and $\nu>0$.
Also, the pdf $f_{(W)}(w)$ of W is given by

$$
\begin{equation*}
f_{(W)}(w)=\frac{\nu^{n}(-\ln w)^{n-1} w^{\nu-1}}{\Gamma(n)} \tag{11}
\end{equation*}
$$

for all $0<w<1, \nu>0$ and $n \geq 1$.
From (9), (10) and (11), we obtain $f_{(U)}(u) f_{(W)}(w)=f_{(U),(W)}(u, w)$.
Hence $U=\frac{X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $W=X_{L(n)}$ are independent for $n \geq 1$.

Now we will prove the sufficient condition. By the same manner as Theorem 2.1, let us use the transformations $U=\frac{X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $W=X_{L(n)}$. The Jacobian of the transformations is $|J|=\frac{w}{(u+1)^{2}}$. Thus we can write the joint pdf $f_{(U),(W)}(u, w)$ of U and W as

$$
\begin{equation*}
f_{(U),(W)}(u, w)=\frac{f\left(\frac{u w}{u+1}\right)(H(w))^{n-1} h(w) w}{\Gamma(n)(u+1)^{2}} \tag{12}
\end{equation*}
$$

for all $u>0,0<w<1$ and $n \geq 1$.
The pdf $f_{(W)}(w)$ of W is given by

$$
\begin{equation*}
f_{(W)}(w)=\frac{(H(w))^{n-1} f(w)}{\Gamma(n)} \tag{13}
\end{equation*}
$$

for all $0<w<1$ and $n \geq 1$.

From (12) and (13), we obtain the pdf $f_{(U)}(u)$ of U

$$
f_{(U)}(u)=\frac{f\left(\frac{u w}{u+1}\right) h(w) w}{(u+1)^{2} f(w)}
$$

for all $u>0,0<w<1$ and $n \geq 1$, where $h(x)=\frac{f(x)}{F(x)}$.
That is,

$$
f_{(U)}(u)=\frac{\partial}{\partial u}\left(F\left(\frac{u w}{u+1}\right) / F(w)\right) .
$$

Since U and W are independent, we must have

$$
\begin{equation*}
F\left(\frac{u w}{u+1}\right)=F\left(\frac{u}{u+1}\right) F(w) \tag{14}
\end{equation*}
$$

for all $u>0$ and $0<w<1$.
Upon substituting $\frac{u}{u+1}=u_{2}$ in (14), then we get

$$
\begin{equation*}
F\left(u_{2} w\right)=F\left(u_{2}\right) F(w) \tag{15}
\end{equation*}
$$

for all $0<u_{2}<1$ and $0<w<1$.
By the functional equations (see, [1]), the only continous solution of (15) with the boundary conditions $F(0)=0$ and $F(1)=1$ is

$$
F(x)=x^{\nu}
$$

for all $0<x<1$ and $\nu>0$.
This completes the proof.
Theorem 2.3. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables with cdf $F(x)$ which is an absolutely continuous with pdf $f(x)$ and $F(0)=0, F(1)=1$ and $F(x)<1$ for all $0<x<1$. Then $F(x)=x^{\nu}$ for all $0<x<1$ and $\nu>0$, if and only if $\frac{X_{L(n)}+X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n \geq 1$.

Proof. In the same manner as Theorem 2.1, we consider the functions $U=\frac{X_{L(n)}+X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $W=X_{L(n)}$. It follows that $x_{L(n)}=w$, $x_{L(n+1)}=\frac{(u-1) w}{(u+1)}$ and $|J|=\frac{2 w}{(u+1)^{2}}$. Thus we can write the joint pdf $f_{(U),(W)}(u, w)$ of U and W as

$$
\begin{equation*}
f_{(U),(W)}(u, w)=\frac{2 \nu^{n+1}(u-1)^{\nu-1}(-\ln w)^{n-1} w^{\nu-1}}{\Gamma(n)(u+1)^{\nu+1}} \tag{16}
\end{equation*}
$$

for all $u>1,0<w<1, \nu>0$ and $n \geq 1$.
The marginal pdf $f_{(U)}(u)$ of U is given by

$$
\begin{equation*}
f_{(U)}(u)=\frac{2 \nu(u-1)^{\nu-1}}{(u+1)^{\nu+1}} \tag{17}
\end{equation*}
$$

for all $u>1$ and $\nu>0$.
Also, the pdf $f_{(W)}(w)$ of W is given by

$$
\begin{equation*}
f_{(W)}(w)=\frac{\nu^{n}(-\ln w)^{n-1} w^{\nu-1}}{\Gamma(n)} \tag{18}
\end{equation*}
$$

for all $0<w<1, \nu>0$ and $n \geq 1$.
From (16), (17) and (18), we obtain $f_{(U)}(v) f_{(W)}(w)=f_{(U),(W)}(u, w)$.
Hence $U=\frac{X_{L(n)}+X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $W=X_{L(n)}$ are independent for $n \geq 1$.

Now we will prove the sufficient condition. By the same manner as Theorem 2.1, let us use the transformations $U=\frac{X_{L(n)}+X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $W=X_{L(n)}$. The Jacobian of the transformations is $|J|=\frac{2 w}{(u+1)^{2}}$. Thus we can write the joint pdf $f_{(U),(W)}(u, w)$ of U and W as

$$
\begin{equation*}
f_{(U),(W)}(u, w)=\frac{2 f\left(\frac{(u-1) w}{u+1}\right)(H(w))^{n-1} h(w) w}{\Gamma(n)(u+1)^{2}} \tag{19}
\end{equation*}
$$

for all $u>1,0<w<1$ and $n \geq 1$.
The pdf $f_{(W)}(w)$ of W is given by

$$
\begin{equation*}
f_{(W)}(w)=\frac{(H(w))^{n-1} f(w)}{\Gamma(n)} \tag{20}
\end{equation*}
$$

for all $0<w<1$ and $n \geq 1$.
From (19) and (20), we obtain the pdf $f_{(U)}(u)$ of U

$$
f_{(U)}(u)=\frac{2 f\left(\frac{(u-1) w}{(u+1)}\right) h(w) w}{(u+1)^{2} f(w)}
$$

for all $u>1,0<w<1$ and $n \geq 1$, where $h(x)=\frac{f(x)}{F(x)}$.
That is,

$$
f_{(U)}(u)=\frac{\partial}{\partial u}\left(F\left(\frac{(u-1) w}{(u+1)}\right) / F(w)\right) .
$$

Since U and W are independent, we must have

$$
\begin{equation*}
F\left(\frac{(u-1) w}{(u+1)}\right)=F\left(\frac{u-1}{u+1}\right) F(w) \tag{21}
\end{equation*}
$$

for all $u>1$ and $0<w<1$.
Upon substituting $\frac{u-1}{u+1}=u_{3}$ in (21), then we get

$$
\begin{equation*}
F\left(u_{3} w\right)=F\left(u_{3}\right) F(w) \tag{22}
\end{equation*}
$$

for all $0<u_{3}<1$ and $0<w<1$.
By the functional equations (see, [1]), the only continous solution of (22) with the boundary conditions $F(0)=0$ and $F(1)=1$ is

$$
F(x)=x^{\nu}
$$

for all $0<x<1$ and $\nu>0$.
This completes the proof.

References

[1] J. Aczel, Lecturees on Functional Equations and Their Applications, Academic Press, NY, 1966.
[2] M. Ahsanuallah, Record Statistics, Nova Science Publishers, Inc., NY, 1995.
[3] M. Ahsanuallah, Record Values-Theory and Applications, University Press of America, Inc., NY, 2004.
[4] K. N. Chander, The distribution and frequency of record values, Journal of the Royal Statistical Society, Series B, 14, (1952), 220-228.
[5] S. K. Chang, Characterizations of the Pareto distribution by the independence of record values, JCMS, 20, no. 1, (2007), 51-57.
*
Department of Mathematics Education
Cheongju University
Cheongju, Chungbuk 360-764, Republic of Korea
E-mail: skchang@cju.ac.kr

