• Title/Summary/Keyword: 0.18 ${\mu}m$ CMOS

Search Result 599, Processing Time 0.03 seconds

A Small Areal Dual-Output Switched Capacitor DC-DC Converter with a Improved Range of Input Voltage (입력전압 범위가 향상된 저면적 이중출력 스위치드 커패시터 DC-DC 변환기)

  • Hwang, Seon-Kwang;Kim, Seong-Yong;Woo, Ki-Chan;Kim, Tae-Woo;Yang, Byung-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1755-1762
    • /
    • 2016
  • In this paper, a small areal dual-output SC(switched capacitor) DC-DC converter with a improved range of an input voltage is presented. The conventional SC DC-DC converter has an advantage of low cost and small chip area. But, it has a narrow input voltage range to convert efficiently. Also, it has a lager chip area and a lower power efficiency from multiple outputs. The proposed SC DC-DC converter improves the power efficiency by using the capacitor array structure which efficiently converts the voltage according to the input voltage. By sharing two switch array, it reduces the number of switches and capacitors from 32 to 25. The proposed SC DC-DC converter was manufactured in a $0.18{\mu}m$ CMOS process. In the simulation, the range of the input voltage is 0.7~ 1.8V, the max. power efficiency is 90%, and the chip area is $0.255mm^2$.

Hybrid Balanced VCO Suitable for Sub-1V Supply Voltage Operation (1V 미만 전원전압 동작에 적합한 혼성 평형 전압제어 발진기)

  • Jeon, Man-Young;Kim, Kwang-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.715-720
    • /
    • 2012
  • This study presents a hybrid balanced voltage controlled oscillator (VCO) circuit which is suitable for low phase noise operation at sub-1V supply voltages. Half circuits of the proposed VCO use the varactor-integrated feedback capacitors in their respective circuit. The varactor-integrated feedback capacitors further increase the negative resistance of the equivalent tank thereby ensuring stable start-up of oscillation even at the sub-1V supply voltage. In addition, this work theoretically analyses the phenomenon of the increase of the negative resistance. Simulation results using a $0.18{\mu}m$ RF CMOS technology exhibit the phase noises of -122.4 to -125.5.8 dBc/Hz at 1 MHz offset from oscillation frequency of 4.87 GHz over the supply voltages of 0.6 through 0.9 V.

A Low Jitter Dual Output Frequency Synthesizer Using Phase-Locked Loop for Smart Audio Devices (위상고정루프를 이용한 낮은 지터 성능을 갖는 스마트 오디오 디바이스용 이중 출력 주파수 합성기 설계)

  • Baek, Ye-Seul;Lee, Jeong-Yun;Ryu, Hyuk;Lee, Jongyeon;Baek, Donghyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.27-35
    • /
    • 2016
  • A Low jitter dual output frequency synthesizer for smart audio devices is described in this paper. It has been fabricated in a 1.8 V Dongbu $0.18-{\mu}m$ CMOS process. Output frequency is controlled by 3 rd order Sigma-Delta Modulation and digital divider. The frequency synthesizer has a size of $0.6mm^2$, frequency range of 0.6-200 MHz, loop bandwidth of 350 kHz, and rms jitter of 11.4 ps-21.6 ps.

A Differential Colpitts-VCO Circuit Suitable for Sub-1V Low Phase Noise Operation (1V 미만 전원 전압에서 저 위상잡음에 적합한 차동 콜피츠 전압제어 발진기 회로)

  • Jeon, Man-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • This paper proposes a differential Colpitts-VCO circuit suitable for low phase noise oscillation at the sub-1V supply voltage. Oscillation with low phase noise at the sub-1V supply voltage is facilitated by employing inductors as the current sources of the proposed circuit. One of the two feedback capacitors of the single-ended Colpitts oscillator in the proposed circuit is replaced with the MOS varactor in order to further reduce the resonator loss. Post-layout simulation results using a $0.18{\mu}m$ RF CMOS technology show that the phase noises at the 1MHz offset frequency of the proposed circuit oscillating at the sub-1V supply voltages of 0.6 to 0.9 V are at least 7 dBc/Hz lower than those of the well-known cross-coupled differential VCO.

Implementation of 1.9GHz RF Frequency Synthesizer for USN Sensor Nodes (USN 센서노드용 1.9GHz RF 주파수합성기의 구현)

  • Kang, Ho-Yong;Kim, Nae-Soo;Chai, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.5
    • /
    • pp.49-54
    • /
    • 2009
  • This paper describes implementation of the 1.9GHz RF frequency synthesizer with $0.18{\mu}m$ silicon CMOS technology being used as an application of the USN sensor node transceiver modules. To get good performance of speed and noise, design of the each module like VCO, prescaler, 1/N divider, fractional divider with ${\Sigma }-{\Delta}$ modulator, and common circuits of the PLL has been optimized. Especially to get good performance of speed, power consumption, and wide tuning range, N-P MOS core structure has been used in design of the VCO. The chip area including pads for testing is $1.2{\times}0.7mm^2$, and the chip area only core for IP in SoC is $1.1{\times}0.4mm^2$. The test results show that there is no special spurs except -63.06dB of the 6MHz reference spurs in the PLL circuitry. There is good phase noise performance like -116.17dBc/Hz in 1MHz offset frequency.

Three Level Buck Converter Utilizing Multi-bit Flying Capacitor Voltage Control (멀티비트 플라잉 커패시터의 전압제어를 이용한 3-레벨 벅 변환기)

  • So, Jin-Woo;Yoon, Kwang-Sub
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1006-1011
    • /
    • 2018
  • This paper proposes a three level buck converter utilizing multi-bit flying capacitor voltage control. The conventional three-level buck converter can not control the flying capacitor voltage, so that the operation is unstable or the circuit for controlling the flying capacitor voltage can not be applied to the PWM mode. Also when the load current is increased, an error occurs in the inductor voltage. The proposed structure can control the flying capacitor voltage in PWM mode by using differential difference amplifier and common mode feedback circuit. In addition, this paper proposes a 3bit flying capacitor voltage control circuit to optimize the operation of the three level buck converter depending on the load current, and a triangular wave generation circuit using the schmitt trigger circuit. The proposed 3-level buck converter is designed in $0.18{\mu}m$ CMOS process and has an input voltage range of 2.7V~3.6V and an output voltage range of 0.7V~2.4V. The operating frequency is 2MHz, the load current range is 30mA to 500mA, and the output voltage ripple is measured up to 32.5mV. The measurement results show a maximum power conversion efficiency of 85% at a load current of 130 mA.

Dual-Band Six-Port Direct Conversion Receiver with I/Q Mismatch Calibration Scheme for Software Defined Radio (Software Defined Radio를 위한 I/Q 부정합 보정 기능을 갖는 이중 대역 Six-Port 직접변환 수신기)

  • Moon, Seong-Mo;Park, Dong-Hoon;Yu, Jong-Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.651-659
    • /
    • 2010
  • In this paper, a new six-port direct conversion receiver for high-speed multi-band multi-mode wireless communication system such as software defined radio(SDR) is proposed. The designed receiver is composed of two CMOS four-port BPSK receivers and a dual-band one-stage polyphase filter for quadrature LO signal generation. The four-port BPSK receiver, implemented in 0.18 ${\mu}m$ CMOS technology for the first time in microwave-band, is composed of two active combiners, an active balun, two power detector, and an analog decoder. The proposed polyphase filter adopt type-I architecture, one-stage for reduction of the local oscillator power loss, and LC resonance structure instead of using capacitor for dual-band operation. In order to extent the operation RF bandwidth of the proposed six-port receiver, we include I/Q phase and amplitude calibration scheme in the six-port junction and the power detector. The calibration range of the phase and amplitude mismatch in the proposed calibration scheme is 8 degree and 14 dB, respectively. The validity of the designed six-port receiver is successfully demonstrated by modulating M-QAM, and M-PSK signal with 40 Msps in the two-band of 900 MHz and 2.4 GHz.

A 3.125Gb/s/ch Low-Power CMOS Transceiver with an LVDS Driver (LVDS 구동 회로를 이용한 3.125Gb/s/ch 저전력 CMOS 송수신기)

  • Ahn, Hee-Sun;Park, Won-Ki;Lee, Sung-Chul;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.7-13
    • /
    • 2009
  • This paper presents a multi-channel transceiver that achieves a data rate of 3.125Gb/s/ch. The LVDS is used because of its noise immunity and low power consumption. And a pre-emphasis circuit is also proposed to increase the transmitter speed. On the receiver side, a low-power CDR(clock and data recovery) using 1/4-rate clock based on dual-interpolator is proposed. The CDR generates needed additional clocks in each recovery part internally using only inverters. Therefore each part can be supplied with the same number of 1/4-rate clocks from a clock generator as in 1/2-rate clock method. Thus, the reduction of a clock frequency relaxes the speed limitation and lowers power dissipation. The prototype chip is comprised of two channels and was fabricated in a $0.18{\mu}m$ standard CMOS process. The output jitter of transmitter is loops, peak-to-peak(0.31UI) and the measured recovered clock jitter is 47.33ps, peak-to-peak which is equivalent to 3.7% of a clock period. The area of the chip is $3.5mm^2$ and the power consumption is about 119mW/ch.

Design of a CMOS Dual-Modulus Prescaler Using New High-Speed Low-Power TSPC D-Flip Flops (새로운 고속 저전력 TSPC D-플립플롭을 사용한 CMOS Dual-Modulus 프리스케일러 설계)

  • Oh, Kun-Chang;Lee, Jae-Kyong;Kang, Ki-Sub;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.152-160
    • /
    • 2005
  • A prescaler is an essential building block for PLL-based frequency synthesizers and must satisfy high-speed and low-power characteristics. The design of D-flip flips used in the prescaler implementation is thus critical. Conventional TSPC D-flip flops suffer from glitches, unbalanced propagation delay, and unnecessary charge/discharge at internal nodes in precharge phase, which results in increased power consumption. In this paper a new dynamic D-flip flop is proposed to overcome these problems. Glitches are minimized using discharge suppression scheme, speed is improved by making balanced propagation delay, and low power consumption is achieved by removing unnecessary discharge. The proposed D-flip flop is employed in designing a 128/129 dual-modulus prescaler using $0.18{\mu}m$ CMOS process parameters. The designed prescaler operates up to 5GHz while conventional one can operate up to 4.5GHz under same conditions. It consumes 0.394mW at 4GHz that is a 34% improved result compared with conventional one.

  • PDF

A 0.4-2GHz, Seamless Frequency Tracking controlled Dual-loop digital PLL (0.4-2GHz, Seamless 주파수 트래킹 제어 이중 루프 디지털 PLL)

  • Son, Young-Sang;Lim, Ji-Hoon;Ha, Jong-Chan;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.65-72
    • /
    • 2008
  • This paper proposes a new dual-loop digital PLL(DPLL) using seamless frequency tracking methods. The dual-loop construction, which is composed of the coarse and fine loop for fast locking time and a switching noise suppression, is used successive approximation register technique and TDC. The proposed DPLL in order to compensate the quality of jitter which follows long-term of input frequency is newly added cord conversion frequency tracking method. Also, this DPLL has VCO circuitry consisting of digitally controlled V-I converter and current-control oscillator (CCO) for robust jitter characteristics and wide lock range. The chip is fabricated with Dongbu HiTek $0.18-{\mu}m$ CMOS technology. Its operation range has the wide operation range of 0.4-2GHz and the area of $0.18mm^2$. It shows the peak-to-peak period jitter of 2 psec under no power noise and the power dissipation of 18mW at 2GHz through HSPICE simulation.