• Title/Summary/Keyword: 0-minimal

Search Result 1,549, Processing Time 0.023 seconds

SEPARABLE MINIMAL SURFACES AND THEIR LIMIT BEHAVIOR

  • Daehwan Kim;Yuta Ogata
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.761-778
    • /
    • 2024
  • A separable minimal surface is represented by the form of f(x) + g(y) + h(z) = 0, where f, g and h are real-valued functions of x, y and z, respectively. We provide exact equations for separable minimal surfaces with elliptic functions that are singly, doubly and triply periodic minimal surfaces and completely classify all them. In particular, parameters in the separable minimal surfaces change the shape of the surfaces, such as fundamental periods and its limit behavior, within the form f(x) + g(y) + h(z) = 0.

IMBEDDINGS OF MANIFOLDS DEFINED ON AN 0-MINIMAL STRUCTURE ON (R,+,.,<)

  • Kawakami, Tomohiro
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.183-201
    • /
    • 1999
  • Let M be an 0-minimal structure on the standard structure :=( , +, ,<) of the field of real numbers. We study Cr -G manifolds (0$\leq$r$\leq$w) which are generalizations of Nash manifolds and Nash G manifolds. We prove that if M is polynomially bounded, then every Cr -G (0$\leq$r<$\infty$) manifold is Cr -G imbeddable into some n, and that if M is exponential and G is a compact affine Cw -G group, then each compact $C\infty$ -G imbeddable into some representation of G.

  • PDF

MINIMIZATION OF THE DENSE SUBSET

  • Kang, Buhyeon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.33-41
    • /
    • 2020
  • We introduced the concept of the 𝜖0-density and the 𝜖0-dense ace in [1]. This concept is related to the structure of employment. In addition to the double capacity theorem which was introduced in [1], we need the minimal dense subset. In this paper, we investigate a concept of the minimal 𝜖0-dense subset in the Euclidean m dimensional space.

CHARACTERIZING THE MINIMALITY AND MAXIMALITY OF ORDERED LATERAL IDEALS IN ORDERED TERNARY SEMIGROUPS

  • Iampan, Aiyared
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.775-784
    • /
    • 2009
  • In 1932, Lehmer [4] gave the definition of a ternary semigroup. We can see that any semigroup can be reduced to a ternary semigroup. In this paper, we give some auxiliary results which are also necessary for our considerations and characterize the relationship between the (0-)minimal and maximal ordered lateral ideals and the lateral simple and lateral 0-simple ordered ternary semigroups analogous to the characterizations of minimal and maximal left ideals in ordered semigroups considered by Cao and Xu [2].

POLYTOPES OF MINIMAL NULL DESIGNS

  • Cho, Soo-Jin
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.143-153
    • /
    • 2002
  • Null designs form a vector space and there are only finite number of minimal null designs(up to scalar multiple), hence it is natural to look at the convex polytopes of minimal null designs. For example, when t = 0, k = 1, the convex polytope of minimal null designs is the polytope of roofs of type An. In this article, we look at the convex polytopes of minimal null designs and find many general properties on the vertices, edges, dimension, and some structural properties that might help to understand the structure of polytopes for big n, t through the structure of smaller n, t.

A CONSTRAINT ON SYMPLECTIC STRUCTURE OF ${b_2}^{+}=1$ MINIMAL SYMPLECTIC FOUR-MANIFOLD

  • Cho, Yong-Seung;Kim, Won-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.209-216
    • /
    • 1999
  • Let X be a minimal symplectic four-manifold with ${b_2}^{+}$=1 and $c_1(K)^2\;\geq\;0$. Then we show that there are no symple tic structures $\omega$ such that $$c_1(K)$\cdot\omega$ > 0, if X contains an embedded symplectic submanifold $\Sigma$ satisfying $\int_\Sigmac_1$(K)<0.

  • PDF

ON THE EXTREMAL TYPE I BINARY SELF-DUAL CODES WITH NEAR-MINIMAL SHADOW

  • HAN, SUNGHYU
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.1_2
    • /
    • pp.85-95
    • /
    • 2019
  • In this paper, we define near-minimal shadow and study the existence problem of extremal Type I binary self-dual codes with near-minimal shadow. We prove that there is no such codes of length n = 24m + 2($m{\geq}0$), n = 24m + 4($m{\geq}9$), n = 24m + 6($m{\geq}21$), and n = 24m + 10($m{\geq}87$).

AN ERDŐS-KO-RADO THEOREM FOR MINIMAL COVERS

  • Ku, Cheng Yeaw;Wong, Kok Bin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.875-894
    • /
    • 2017
  • Let $[n]=\{1,2,{\ldots},n\}$. A set ${\mathbf{A}}=\{A_1,A_2,{\ldots},A_l\}$ is a minimal cover of [n] if ${\cup}_{1{\leq}i{\leq}l}A_i=[n]$ and $$\bigcup_{{1{\leq}i{\leq}l,}\\{i{\neq}j_0}}A_i{\neq}[n]\text{ for all }j_0{\in}[l]$$. Let ${\mathcal{C}}(n)$ denote the collection of all minimal covers of [n], and write $C_n={\mid}{\mathcal{C}}(n){\mid}$. Let ${\mathbf{A}}{\in}{\mathcal{C}}(n)$. An element $u{\in}[n]$ is critical in ${\mathbf{A}}$ if it appears exactly once in ${\mathbf{A}}$. Two minimal covers ${\mathbf{A}},{\mathbf{B}}{\in}{\mathcal{C}}(n)$ are said to be restricted t-intersecting if they share at least t sets each containing an element which is critical in both ${\mathbf{A}}$ and ${\mathbf{B}}$. A family ${\mathcal{A}}{\subseteq}{\mathcal{C}}(n)$ is said to be restricted t-intersecting if every pair of distinct elements in ${\mathcal{A}}$ are restricted t-intersecting. In this paper, we prove that there exists a constant $n_0=n_0(t)$ depending on t, such that for all $n{\geq}n_0$, if ${\mathcal{A}}{\subseteq}{\mathcal{C}}(n)$ is restricted t-intersecting, then ${\mid}{\mathcal{A}}{\mid}{\leq}{\mathcal{C}}_{n-t}$. Moreover, the bound is attained if and only if ${\mathcal{A}}$ is isomorphic to the family ${\mathcal{D}}_0(t)$ consisting of all minimal covers which contain the singleton parts $\{1\},{\ldots},\{t\}$. A similar result also holds for restricted r-cross intersecting families of minimal covers.