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SEPARABLE MINIMAL SURFACES AND

THEIR LIMIT BEHAVIOR

Daehwan Kim and Yuta Ogata

Abstract. A separable minimal surface is represented by the form of

f(x) + g(y) + h(z) = 0, where f , g and h are real-valued functions of
x, y and z, respectively. We provide exact equations for separable min-

imal surfaces with elliptic functions that are singly, doubly and triply
periodic minimal surfaces and completely classify all them. In particular,

parameters in the separable minimal surfaces change the shape of the

surfaces, such as fundamental periods and its limit behavior, within the
form f(x) + g(y) + h(z) = 0.

1. Introduction

Minimal surface theory in R3 is a classical subject in differential geometry
and natural science. The theory is rooted in the calculus of variations developed
by Euler and Lagrange, and various techniques in this theory have played key
roles in differential geometry. Minimal surfaces can be distinguished according
to the rank of lattices of translational invariance, namely, a minimal surface is
called singly, doubly or triply periodic if it is invariant by an isometry group
of R3 of rank 1, 2 or 3, respectively, acting properly and discontinuously.

A regular surface Σ in R3 is said to be separable if it can be expressed as

Σ = {(x, y, z) | F (x, y, z) = f(x) + g(y) + h(z) = 0},
where f , g and h are real-valued functions and ∇F is a non-vanishing vector
field for every point on Σ. There are various examples of separable surfaces that
appear for certain choices of the functions f , g and h: a translation surface,
a homothetical surface, a rotationally symmetric surface, etc. The study of
separable surfaces with geometric conditions (minimal, constant mean curva-
ture, constant Gauss curvature, etc.) has been ongoing as follows: Scherk [11]
found examples of minimal surfaces. Weingarten [14] investigated the problem
to determine all separable minimal surfaces, realizing that they form a rich and
large family of surfaces (more references for this are [1, 4, 5, 12]). Hasanis and
López [6] classified all separable surfaces with constant Gaussian curvature in
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R3. Sergienko and Tkachev [13] constructed doubly periodic maximal surfaces
represented by an implicit equation ζ(z) = ϕ(x)ψ(y) in the Lorentzian 3-space.
Kaya and López [7] classified some separable surfaces with zero mean curvature
in the Lorentzian 3-space.

There are several kinds of families between two minimal surfaces in R3.
We list up on separable minimal surfaces in R3 and their relations as follows:
In [9], Nitsche introduced and showed several examples of separable minimal
surfaces including the planes, catenoids, helicoids, Scherk’s surfaces, Schwartz’s
surfaces, etc (see [9, Section 5.2, equations (40), (41), (42), (43), (44), (45) and
(47)]). Rodŕıguez [10] gave classifications of doubly periodic minimal surfaces
for up to genus 1, which is called Rodŕıguez’ standard examples. Meeks [8]
found a 5-parameters family of triply periodic minimal surfaces of genus 3.
Ejiri, Fujimori and Shoda [2] showed that continuous deformations between
Rodŕıguez’ standard examples and the 5-parameters family given by Meeks.
They [3] also provided a one-parameter family between Karcher’s saddle towers
and Rodŕıguez’ standard examples as generic limits.

The organization of this paper is as follows: In Section 2, we provide a
minimality condition for a separable equation, which yields four cases according
to the behavior of a constant κ obtained by the separation of variables. In
particular, we analyze the parameters related to the solutions and find explicit
equations for all separable minimal surfaces in each case in Sections 3, 4 and 5,
via elliptic functions. In Section 3, we consider the case κ > 0 and obtain five
types of two parameter families of triply periodic minimal surfaces with genus 3
and some of them has limits such as a helicoid, a generalized Scherk’s surface, a
Scherk’s tower and doubly periodic minimal surfaces with genus 1 and parallel
planar ends. In Section 4, we obtain only a two parameter family of triply
periodic minimal surfaces, including the Schwarz’s P-surface. In Section 5, we
deal with the case of κ = 0, which implies cases of a generalized Scherk’s tower
that can converges to a catenoid. As a summary of Sections 3, 4 and 5, we
obtain as follows:

Theorem 1. Separable minimal surfaces in R3 with an implicit form f(x) +
g(y) + h(z) = 0 can be classified as follows (see Figure 1):

(1) There are five types of two-parameters families of triply periodic mini-
mal surfaces, namely, snsnsn, snscsc, nssnns, scnssn and nssnnd-types
minimal surfaces (see Proposition 3.2) and their limits are as follows:
(a) snsnsn, snscsc and nssnns-type minimal surfaces can converge to a

generalized Scherk’s surface (see Proposition 3.3).
(b) nssnns, scnssn and nssnnd-type minimal surfaces can converge to

doubly periodic minimal surfaces with genus 1 and parallel planar
ends (see Proposition 3.4). In particular, a doubly periodic mini-
mal surface from a scnssn-type minimal surface can converge to a
helicoid.
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(c) A doubly periodic minimal surface from a nssnns-type minimal sur-
face in (a) can converge to Scherk’s tower (see Proposition 3.5).

(2) There is a Scherk’s surface (see Proposition 3.6).
(3) There is a two-parameter family of triply periodic minimal surfaces con-

taining the Schwarz’s P-surface (see Proposition 4.1).
(4) There is a generalized Scherk’s tower (see Proposition 5.1) and it can

converge to a catenoid (see Proposition 5.2).

In particular, any non-planar separable minimal surface can converge to a
plane.

2. Preliminaries

We first summarize Jacobi’s elliptic functions. The incomplete elliptic inte-
gral of the first kind F is defined by

F(φ | k2) = F(sin(φ); k) =

∫ φ

0

dθ√
1− k2 sin2(θ)

.

Substituting t = sin(θ) and x = sin(φ), the integral can be represented as the
Legendre normal form

F(x; k) =

∫ x

0

dt√
(1− t2)(1− k2t2)

.

The inverse function of u = F(φ | m) is called the Jacobi amplitude that
depends on u and k, namely,

φ = am(u,m).

Then, the elliptic sine sn, elliptic cosine cn and delta amplitude dn, which are
called Jacobi’s elliptic functions, are defined by

sn(u,m) = sin(am(u,m)),

cn(u,m) = cos(am(u,m)),

dn(u,m) = d
duam(u,m).

In particular, the parameter k is considered as 0 ≤ k ≤ 1. Let us define
K(k) = u(π2 , k) that is a complete elliptic integral of the first kind. Therefore,

sn(u) = sn(u, k2) is a monotonically increasing odd continuous function defined
on [−K(u),K(u)] and satisfies sn(0) = 0, sn(±K(k)) = ±1, sn(u+2K(k), k2) =
−sn(u, k2) and sn(u + 4K(k), k2) = sn(u, k2). For example, if k = 0, then
sn(u, 0) = sin(u) on [−π

2 ,
π
2 ]. Also, we have the following relations for m = k2:

sc(u,m) =
sn(u,m)

cn(u,m)
, ns(u,m) =

1

sn(u,m)
, nc(u,m) =

1

cn(u,m)
,

nd(u,m) =
1

dn(u,m)
, dc(u,m) = nc(u,m)dn(u,m),

ds(u,m) = ns(u,m)dn(u,m).
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Secondly, we consider the minimality condition for a separable surface Σ
that is represented by the implicit form

F (x, y, z) = f(x) + g(y) + h(z).(2-1)

The unit normal vector field ν and the mean curvature H are as follows:

ν =
∇F
∥∇F∥

,

H = div

(
− ∇F
∥∇F∥

)
=

1

∥∇F∥2
(∇F (∥∇F∥)− ∥∇F∥△F ).

In particular, the regularity of Σ is guaranteed by ∥∇F∥ ≠ 0. Then, we have
a minimal surface equation as follows:

((g′)2 + (h′)2)f ′′ + ((f ′)2 + (h′)2)g′′ + ((f ′)2 + (g′)2)h′′ = 0,(2-2)

where the prime ′ denotes a derivative of a function with respect to its variable.
In the rest of this section, we begin with the classification of the separable
minimal surfaces. Here we follow the same ideas with done by Nitsche [9,
Section 5.2]. By completeness, we repeat the same arguments. Using the
variables u = f(x), v = g(y) and w = h(z) and the abbreviations X(u) =
(f ′(x))2, Y (u) = (g′(y))2 and Z(w) = (h′(z))2, the equations (2-1) and (2-2)
yield that

(2-3)

{
u+ v + w = 0,

(Y + Z)X ′ + (X + Z)Y ′ + (X + Y )Z ′ = 0.

In particular, if X ′ = Y ′ = Z ′ = 0, then f , g and h are linear functions, which
means that Σ is a plane. Thus, three cases are appeared according to the value
of X ′Y ′Z ′.

Case 1. X ′Y ′Z ′ ̸= 0.
We obtain a constant κ such that

X ′′′

X ′ =
Y ′′′

Y ′ =
Z ′′′

Z ′ = κ.

Thus, there are two possibilities: κ ̸= 0 and κ = 0.
(1) κ ̸= 0.

Solutions of X, Y and Z are

X(u) = a1 + b1e
√
κu + c1e

−
√
κu,

Y (v) = a2 + b2e
√
κv + c2e

−
√
κv,(2-4)

Z(w) = a3 + b3e
√
κw + c3e

−
√
κw,

where ai is a real number and bi and ci are non-zero real numbers
for each i = 1, 2, 3 if κ > 0. Otherwise, bi and ci are non-zero
complex numbers with bi = ci for each i = 1, 2, 3. Inserting the
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solutions into the equation (2-3) and comparing the coefficients of
exponential-terms as independent terms, we obtain

(a2 + a3)b1 = 2c2c3, (a3 + a1)b2 = 2c3c1, (a1 + a2)b3 = 2c1c2,

(a2 + a3)c1 = 2b2b3, (a3 + a1)c2 = 2b3b1, (a1 + a2)c3 = 2b1b2.
(2-5)

(2) κ = 0.
Solutions of X, Y and Z are as follows:

X(u) = a1 + b1u+ c1u
2,

Y (v) = a2 + b2v + c2v
2,(2-6)

Z(w) = a3 + b3w + c3w
2,

where ai is a real number and bi and ci are non-zero real numbers.
Substituting the solutions into the equation (2-3), the coefficients
of the independent terms of polynomials of u and v yield

(a1 + a2)b3 + (a2 + a3)b1 + (a3 + a1)b2 = 0,

c1c2 + c2c3 + c3c1 = 0,

2(a1 + a2)c3 − b1b2 = 2(a2 + a3)c1 − b2b3 = 2(a3 + a1)c2 − b3b1,

(b1 − b2)c3 = (b2 − b3)c1 = (b3 − b1)c2.

(2-7)

Case 2. X ′ = 0 and Y ′Z ′ ̸= 0.
Without loss of generality, we can assume X ′ = 0 and Y ′Z ′ ̸= 0. The
second item of the equation (2-3) yields

X = a1,

Y ′′ = λY ′,(2-8)

Z ′′ = −λZ ′,

where a1 is a real number and λ is a non-zero real number. These
equations can appear in (1) of Case 1 with κ = λ2 > 0, b1 = c1 = 0
and b3 = c2 = 0. Thus, we have

(2-9) (a3 + a1)b2 = 0, (a1 + a2)c3 = 0.

Case 3. X ′ = Y ′ = 0 and Z ′ ̸= 0.
Without loss of generality, changing roles of variables x, y and z, we
can assume X ′ = Y ′ = 0 and Z ′ ̸= 0. The equation (2-3) yields
(X+Y )Z ′ = 0 and thus there is a constant a0 such that X = −Y = a0,
namely, (f ′)2 = −(g′)2 = a0. Then, we have a0 = 0, f = α1 and g = α2

where α1 and α2 are constants. Therefore, Σ = F−1({α1+α2+h(z)})
is a plane.

We reorganize the cases as the following three cases: The first case contains
κ > 0 in Case 1 and Case 2, the second case is κ < 0 in Case 1 and the third
case is κ = 0 in Case 1. In each case, we first figure out the relation of all
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parameters: the equations (2-5), (2-7) and (2-9) and then secondly, explicit
equations to be minimal surfaces are provided.

3. κ > 0 in Case 1 and Case 2

By scaling invariant of a minimal surface, we may assume κ = 4.

3.1. κ > 0 in Case 1

Let A, B and C be constants related to ai for i = 1, 2, 3 as follows:

A =
a2 + a3

2
, B =

a1 + a3
2

, C =
a1 + a2

2
.(3-1)

Then, the equations (2-5) can be rewritten as

Ab1 = c2c3, Bb2 = c3c1, Cb3 = c1c2,

Ac1 = b2b3, Bc2 = b3b1, Cc3 = b1b2.
(3-2)

Lemma 3.1. Suppose that bi and ci are real numbers so that (bi, ci) ̸= (0, 0)
for i = 1, 2, 3 in the equations (3-2) with κ = 4 in Case 1. Then, there are the
following four cases. In particular, (A2)-(A4) are limits of (A1):

(A1) For ABC ̸= 0, the following equations hold:

a1 = B + C −A, a2 = C +A−B, a3 = A+B − C,

b1 =
Cc3
b2

, b3 =
AB

c3
, c1 =

Bb2
c3

, c2 =
AC

b2
, b2, c3 ∈ R \ {0}.

(A2) For A = 0 and BC ̸= 0, the following equations hold:

a1 = B + C, a2 = −a3 = C −B,

b1 =
Cc3
b2

, c1 =
Bb2
c3

, b3 = c2 = 0, b2, c3 ∈ R \ {0}.

(A3) For A = C = 0 and B ̸= 0, the following equations hold:

a1 = −a2 = a3 = B, b1 = c2 = b3 = 0, c1 =
Bb2
c3

, b2, c3 ∈ R \ {0}.

(A4) For A = B = 0 and C ̸= 0, the following equations hold:

a1 = a2 = −a3 = C, c1 = c2 = b3 = 0, b1 =
Cc3
b2

, b2, c3 ∈ R \ {0}.

Proof. In the case of A = B = C = 0, it is easy to check that bi = ci = 0 for
some i = 1, 2, 3, which is a contradiction. Thus, we have three possibilities:
All of A, B and C are not zero, one of them is zero and two of them are zero.
Without loss of generality, we consider four cases: (A1) ABC ̸= 0, (A2) A = 0
and BC ̸= 0, (A3) A = C = 0 and B ̸= 0 and (A4) A = B = 0 and C ̸= 0.
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Assume that (A1), namely, ABC ̸= 0. If we assume c1 = 0, then we
obtain that b2 = b3 = 0 yields c2 = c3 = 0 by the equations (2-5), which is a
contradiction, namely, c1c2c3 ̸= 0. By the equations (3-2), we have

b1 =
c2c3
A

, b2 =
c3c1
B

, b3 =
c1c2
C

, c1 =
ABC

c2c3
,

and then

b1 =
Cc3
b2

, c1 =
Bb2
c3

, c2 =
AC

b2
, b3 =

AB

c3
.

For the cases (A2), (A3) and (A4), by the similar argument, we get the asser-
tion. □

We define F1 = ef , F2 = eg and F3 = eh. Then, the equation (2-4) is
equivalent to the following equation for any i = 1, 2, 3:

(F ′
i )

2 = aiF
2
i + biF

4
i + ci.(3-3)

We first consider complex-valued solutions of the equation (3-3) up to the
coordinate shift t 7→ t− t0 and coordinate change t 7→ −t. We denote α and β
as constant solutions of bix

2 + aix+ ci = 0:

α =
−ai +

√
a2i − 4bici
2bi

, β =
−ai −

√
a2i − 4bici
2bi

.

We can distinguish cases according to the value of the discriminant D of bix
2+

aix+ ci = 0:

D = a21 − 4b1c1 = a22 − 4b2c2 = a23 − 4b3c3 = (A−B − C)2 − 4BC.

We first consider D ̸= 0 and then observe one-parameter family of separable
minimal surfaces from D ̸= 0 to D = 0. The following lemma and corollary
provide solutions of the equations (3-3) up to coordinate changes.

Lemma 3.2. Suppose that α and β are non-zero distinct solutions of bix
2 +

aix + ci = 0. Then, complex-valued solutions Fi(t) of the equation (3-3) with
F ′
i ̸= 0 have the following form:

Fi = ±
√
βsn

(√
αbi (t+ C) ; β

α

)
,

where C is a complex number and the squared-modulus is β
α .

Proof. It is easy to verify that all cases satisfying bici = 0 contradict to the
equations (2-4) and (2-5). We consider only the case bici ̸= 0. By direct
computation, we obtain

1 = ± F ′
i√

aiF 2
i + biF 4

i + ci
= ± F ′

i√
bi(F 2

i − α)(F 2
i − β)

= ± F ′
i√

(biβF 2
i − ci)(

1
βF

2
i − 1)

.
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We consider a function θ of t such that sin(θ) =
√

1
βFi. Then, we have

1 = ± θ′ cos(θ)
√
β√

(biβ2 sin2(θ)− ci)(sin
2(θ)− 1)

= ± θ′
√
β√

ci − biβ2 sin2(θ)
= ±

√
β

ci

θ′√
1− β

α sin2(θ)
.

After integrating both sides of the above equation, we obtain

±
√
β

ci
F

(
φ

∣∣∣∣ βα
)

= t+ C,

where C is a complex number. Therefore, the solution is

Fi = ±
√
βsn

(√
αbi (t+ C) , β

α

)
.

□

From now on, we use the notation c = + (resp. c = −) as c > 0 (resp. c < 0)
for convenience.

Corollary 3.1. Let α and β be non-zero distinct solutions of bix
2+aix+ci = 0.

Suppose that bi, ci and D = a2i −4bici do not vanish. Then, up to the coordinate
shift, real-valued solutions Fi(t) of the equation (3-3) with F ′

i ̸= 0 are obtained
as follows:

(1) For (ai, bi, ci) = (±,+,+) and D < 0, the solution is

Fi =
√
βsn

(√
αbit,

β

α

)
.

(2) For (ai, bi, ci) = (+,+,+) and D > 0, the solution is

Fi =
√
−βsc

(√
−αbit, 1−

β

α

)
.

(3) For (ai, bi, ci) = (±,+,−) and D > 0, the solution is

Fi =
√
αdc

(√
αbit,

β

α

)
.

(4) For (ai, bi, ci) = (−,+,+) and D > 0, the solution is

Fi(t) =


√
βsn

(√
αbit,

β
α

)
,

√
αns

(√
αbit,

β
α

)
.

(5) For (ai, bi, ci) = (±,−,+) and D > 0, the solution is

Fi =
√
βsn

(√
αbit,

β

α

)
.
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(6) For (ai, bi, ci) = (+,−,−) and D > 0, the solution is

Fi =
√
βnd

(√
−αbit, 1−

β

α

)
.

Proof. In Lemma 3.2, in order to get a real-valued solution Fi(t), we can distin-
guish several cases using bi, D, α and β. For each case, an appropriate integral
constant C is obtained by taking a suitable initial value and using a change of
variables.

1. bi > 0
(1) D < 0

This is the case of (ai, bi, ci) = (±,+,+). If we assume αβ ̸= 0, then
let C = 0 and we get the assertion.

(2) D > 0
i. α < 0 and β < 0

This is the case of (ai, bi, ci) = (+,+,+). Taking C = 0, we
obtain the similar form of Fi with (1).

ii. α > 0 and β < 0

This is the case of (ai, bi, ci) = (±,+,−). Taking C =
√

1
αbi

(K +

iK ′) yields

Fi(t) = ±
√
βsn

(√
αbit+K + iK ′,m

)
= ±

√
βcd

(√
αbit+ iK ′,m

)
= ±

√
αdc

(√
αbit,m

)
.

iii. α > 0 and β > 0
This is the case of (ai, bi, ci) = (−,+,+). There are two types of
solutions. First, we let C = 0 and we obtain the same form of Fi

with (1). Secondly, we consider C =
√

1
αbi

K ′i and obtain

Fi(t) = ±
√
βsn

(√
αbit+ iK ′,m

)
= ±

√
αns

(√
αbit,m

)
.

Similarly, we can check the assertion for the case of bi < 0. □
3.1.1. Case (A1).
In the rest of this section, we denote

n1 =
−(B + C −A) +

√
D

2
, m1 =

B + C −A+
√
D

B + C −A−
√
D
,

n2 =
−(C +A−B) +

√
D

2
, m2 =

C +A−B +
√
D

C +A−B −
√
D
,

n3 =
−(A+B − C) +

√
D

2
, m3 =

A+B − C +
√
D

A+B − C −
√
D
.
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Proposition 3.2. Let Σ be a non-planar separable minimal surface in R3

corresponding to Case (A1) in Lemma 3.1. Then, up to the coordinate change,
Σ is one of the following families of triply periodic minimal surfaces (see Figure
1):

(1) For D < 0, A > 0, B > 0 and C > 0,

sn (
√
n1x,m1) sn (

√
n2y,m2) sn (

√
n3z,m3) = 1.

(2) For D > 0, B > 0, C > 0 and A > B + C + 2
√
BC,

sn (
√
n1x,m1) sc

(√
−n2y, 1−m2

)
sc
(√

−n3z, 1−m3

)
= 1.

(3) For D > 0, A < 0, C < 0, B > 0 and B ̸= |A− C|,

ns (
√
n1x,m1) sn (

√
n2y,m2) ns (

√
n3z,m3) =

√
m2m3.

(4) For B > 0, C > 0, A < 0 and A ̸= −|B − C|,

sc
(√

−n1x, 1−m1

)
ns (

√
n2y,m2) sn (

√
n3z,m3) =

√
−m2.

(5) For D > 0, C < B < 0, B + C + 2
√
BC < A < 0 and A > C −B,

ns (
√
n1x,m1) sn (

√
n2y,m2) nd

(√
−n3z, 1−m3

)
=

√
m1.

Proof. For D < 0, we only have (1) because Fi =
√
β
(√

αbit
β
α

)
by Corollary

3.1. By Corollary 3.1, Fi (i = 1, 2, 3) are one of 6-types of solutions. Moreover,
considering the change of roles of x, y and z, we only need to check their

duplicate combinations, namely, (5+3)!
5! 3! = 56 cases. By direct computation,

most cases do not occur because parameters ai, bi and ci should satisfy the
conditions of Case (A1) in Lemma 3.1 and the range of elliptic functions should
satisfy f + g + h = 0. Thus, we get the assertion. □

Remark 3.1. In Proposition 3.2, the cases of (1), (2), (3), (4) and (5) are
included in the Meeks family [8] because they have genus 3 and are represented
by elliptic functions. They also have two parameters which change the ratios
of edges in the period cuboid.

We call snsnsn-type, snscsc-type, nssnns-type, scnssn-type and nssnnd-type
as the case of (1), (2), (3), (4) and (5) in Proposition 3.2, respectively. We
second consider that the discriminant D tending to 0.

Proposition 3.3. Let ΣD be a surface in a family of snsnsn, snscsc or nssnns-
type minimal surfaces in Proposition 3.2. Then, up to the coordinate change,
the following generalized Scherk’s surface is a limit of ΣD as D → 0 (see Figure
1): For |BC|̸= 0,

tanh
(

4
√
|BC|x

)
tan

(√
|C|+

√
|BC|y

)
tan

(√
|B|+

√
|BC|z

)
= 1.(3-4)
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Proof. Letting D → 0, we have (F ′
i )

2 = bi(Fi +
ai

2bi
)2, α = β and mi = 1.

This implies bi > 0 and ci > 0. Thus, the limit of A as D approaches 0 equals
B + C ± 2

√
BC. Then, snsnsn-type, snscsc-type and nssnns-type converge to

the following equations, respectively:

tanh
(

4
√
BCx

)
tan

(√
C +

√
BCy

)
tan

(√
B +

√
BCz

)
= 1,

tanh
(

4
√
BCx

)
tan

(√
C +

√
BCy

)
tan

(√
B +

√
BCz

)
= 1,

coth
(

4
√
BCx

)
tan

(√
−C +

√
BCy

)
cot

(√
−B +

√
BCz

)
= 1.

For the last equation, we obtain the required equation from cot(π/2 − t) =
tan(t). □

3.1.2. Case (A2).

Proposition 3.4. Let ΣA be a surface in a family of nssnns, scnssn or nssnnd-
type minimal surfaces in Proposition 3.2. Then, up to the coordinate change,
there is a one-parameter family {ΣA} of surfaces as follows (see Figure 1):

(1) From a nssnns-type minimal surface ΣA to the following minimal surface
Σ0: For B > 0, C < 0 and B ̸= −C,√

−B
C
sn

(√
−Cx, B

C

)
sinh

(√
B − Cz

)
= sin

(√
B − Cy

)
.(3-5)

(2) From a scnssn-type minimal surface ΣA to the following minimal surface
Σ0: For B > 0, C > 0 and B ≥ C,√

B

C
sc

(√
Cx, 1− B

C

)
sinh

(√
B − Cz

)
= sin

(√
B − Cy

)
.(3-6)

In particular, the limit of the equation (3-6) as B → C is a helicoid

tan
(√

Bx
)
=
y

z
.

(3) From a nssnnd-type minimal surface ΣA to the following minimal surface
Σ0: For C < B < 0,√

B

C
sn

(√
−Cx, B

C

)
cosh

(√
B − Cz

)
= sin

(√
B − Cy

)
.(3-7)

Proof. Let us consider (A2) as the limit of (A1) as A → 0. It is easy verified
that D = (B−C)2 ≥ 0 and snsnsn-type is not considered. Thus, we distinguish
two cases: B ̸= C and B = C. We have n1 = −C, n2 = B − C, n3 = m2 = 0,
m1 = B/C and m3 = ±∞. For snscsc-type with B > C, it is a contradiction

from B > 0, C > 0 and A > B + C + 2
√
BC. Even if we change the roles of

coordinates x, y and z, we obtain a contradiction. Similarly, we can check other
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cases by same calculation, and we have the equation (3-5) from nssnns-type,
the equation (3-6) from scnssn-type and the equation (3-7) from nssnnd-type.

In a particular case: B = C, we can consider the limit of

sc

(√
Cx, 1− B

C

)
sinh

(√
B − Cz

)
= sin

(√
B − Cy

)
.

Then, we have

sc

(√
Cx, 1− B

C

)
=

sin
(√
B − Cy

)
sinh

(√
B − Cz

) .
Letting B tend to C, we have

tan
(√

Bx
)
=
y

z
,

which is a helicoid. □

Remark 3.2. In Proposition 3.4, the cases of (1), (2) with B ̸= C and (3) are
included in the Rodŕıguez family [10] because they have genus 1 and parallel
planar ends. Up to scaling, we can assume C = ±1, and they have one pa-
rameter which changes the ratio of the edges in the period rectangle lattice.
In particular, a generalized Scherk’s surface and a helicoid can converge to a
plane.

3.1.3. Cases (A3) and (A4).

Proposition 3.5. Let ΣC be a surface in a family of minimal surfaces with the
form (1) in Proposition 3.4. Then, up to the coordinate change, the following
surface is a limit of ΣC as C → 0 (see Figure 1): For B > 0,

sinh
(√

Bx
)
sinh

(√
Bz
)
= sin

(√
By
)
.(3-8)

Proof. By Proposition 3.4, we have the following possible case for a non-planar
separable minimal surface: for B > 0, C < 0, B ̸= −C,√

−B
C
sn

(√
−Cx, B

C

)
sinh

(√
B − Cz

)
= sin

(√
B − Cy

)
.

Letting C → 0, we obtain for B > 0,

sinh
(√

Bx
)
sinh

(√
Bz
)
= sin

(√
By
)
. □

Remark 3.3. The limits of (2) in Proposition 3.4 as C → 0 is a plane. The
limit of (3) in Proposition 3.4 and limit of Proposition 3.5 as B → 0 are planes.
As the same way in Section 3.1.2, we can consider (A4) as the limit of (A2) as
B → 0. By Proposition 3.4, we only have the trivial cases. Even if we apply
the coordinate change as (x, y, z) → (x, z, y), we only obtain the same equation
with (3-8).
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3.2. Case 2

We define 2A′ := a2 + a3, 2B
′ := a1 + a3 and 2C ′ := a1 + a2.

Lemma 3.3. Suppose that ai is a real number and bi and ci are non-zero real
numbers for i = 1, 2, 3 in the equations (2-9) with κ = λ2. Then, there is only
one case: −a1 = a2 = a3 = A′.

Define F1 = ef , F2 = eg and F3 = eh. The following equation is equivalent
to the equation (2-8):

(F ′
1)

2 = a1F
2
1 ,

(F ′
2)

2 = a2F
2
2 + b2F

4
2 ,(3-9)

(F ′
3)

2 = a3F
2
3 + c3.

By the same argument in Case (A), we have the result.

Proposition 3.6. Let Σ be a non-planar separable minimal surface corre-
sponding to Case 2. Then, up to the coordinate change, Σ is a doubly periodic
Scherk’s surface (see Figure 1):

sin (y)

sin (z)
= ex.(3-10)

After a suitable rescaling (x, y, z) → Λ(x, y, z) for a constant Λ, its limit as
Λ → 0 is a plane.

4. κ < 0 in Case 1

We use the notations (3-1) and (3-2).

Lemma 4.1. Suppose that bi and ci are real numbers so that (bi, ci) ̸= (0, 0)
for i = 1, 2, 3 in the equations (2-5). Then, there is only one case:

a1 = B + C −A, a2 = C +A−B, a3 = A+B − C,

b1 =
√
|BC|eiθ1 , b2 =

√
|AC|eiθ2 , b3 =

√
|AB|e−i(θ1+θ2), ci = bi,

where ABC ̸= 0, θ1 and θ2 are real numbers. In particular, one of ai+2|bi| for
i = 1, 2, 3 becomes zero if and only if A = B+C+2

√
|BC|, B = A+C+2

√
|AC|

or C = A+B + 2
√

|AB|.

We define F1 = f , F2 = g and F3 = h. Then, the equation (2-4) is equivalent
to the following equations for κ < 0 and any i = 1, 2, 3:

(F ′
i )

2 = ai + bie
i
√
−κFi + bie

−i
√
−κFi

= ai + 2Re(bi) cos(
√
−κFi)− 2Im(bi) sin(

√
−κFi).

(4-1)

The following lemmas provide solutions of the equations (4-1) up to the coor-
dinate shift.
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Lemma 4.2. Up to the coordinate shift, a solution Fi of the equation (F ′
i )

2 =

ai + bie
i
√
−κFi + bie

−i
√
−κFi is as follows:

Fi(t) =
2√
−κ

am

(√
−κ(ai + ri)

2
t,

2ri
ai + ri

)

for b2i − bi
2 ̸= 0, ai + 2|bi| > 0 and ri = 2|bi|.

Let us denote E1 = −A+B+C+2
√
|BC|, E2 = −B+A+C+2

√
|AC| and

E3 = −C +A+B +2
√
|AB|. According to Lemma 4.1, we have the following

proposition:

Proposition 4.1. Let Σ be a non-planar separable minimal surface corre-
sponding to κ < 0 in Case 1. Then, up to the coordinate change, Σ is a triply
periodic minimal surface with the following form (see Figure 1):

am

(√
−κE1

2
x ,

4
√
|BC|
E1

)
+ am

(√
−κE2

2
y ,

4
√

|AC|
E2

)

+ am

(√
−κE3

2
z ,

4
√

|AB|
E3

)
= 0.

(4-2)

Proof. By Lemma 4.1, we can assume ABC ̸= 0. If E1 > 0, E2 > 0 and
E3 > 0, then we can find solutions f , g and h as follows:

f =
2√
−κ

am

(√
−κE1

2
x ,

4
√

|BC|
E1

)
− θ1,

g =
2√
−κ

am

(√
−κE2

2
y ,

4
√

|AC|
E2

)
− θ2,

h =
2√
−κ

am

(√
−κE3

2
z ,

4
√
|AB|
E3

)
+ (θ1 + θ2).

Therefore, this equation is represented by a triply periodic minimal surface in
R3. □

Remark 4.1. The surfaces in Proposition 4.1 are included in the Meeks family
[8], because they have genus 3 and are represented by elliptic functions. They
also have two parameters which change the ratio of edges in the period cuboid.
In particular, the limit as κ→ 0 in the equation (4-2) is a plane.

5. κ = 0 in Case 1

5.1. κ = 0 in Case 1

We use the notations in (3-1) and define Ã = b1 − b2, B̃ = b2 − b3 and
µ = −1

4(A+B+C) . The following lemma is obtained similarly to Lemma 3.1:
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Lemma 5.1. Suppose that ai is a real number and bi and ci are non-zero real
numbers for i = 1, 2, 3 in the equations (2-7) with κ = 0 in Case 1. Then, there
are three cases (C1), (C2) and (C3). In particular, (C2) and (C3) are limits of
(C1):

(C1) For ÃB̃(Ã+ B̃)(A+B + C) ̸= 0, the following equations hold:

a1 = B + C −A, a2 = C +A−B, a3 = A+B − C,

b1 = −4(C(Ã+ B̃) +BÃ)µ, b2 = b1 − Ã, b3 = 4(A(Ã+ B̃) +BB̃)µ,

c1 = −Ã(Ã+ B̃)µ, c2 = ÃB̃µ, c3 = −B̃(Ã+ B̃)µ,

(C2) For Ã(A+B + C) ̸= 0, the following equations hold:

a1 = B + C −A, a2 = C +A−B, a3 = A+B − C,

b1 = b3 = b2 + Ã = −4BÃµ, c1 = c3 = 0, c2 = −Ã2µ,

(C3) For A,B ∈ R and b1 ̸= 0, the following equations hold:

a1 = −2A, a2 = −2B, a3 = 2A+ 2B, b1 = b2 = b3,

c1 = c2 = c3 = 0.

5.1.1. Case (C1). Let us define F1 = f , F2 = g and F3 = h. The equations
(2-6), which are considered as the case of κ = 0, yield

(F ′
i )

2 = ai + biFi + ciF
2
i ,(5-1)

and we define D′ = b2i − 4aici. The following lemma is obtained similarly to
Lemma 4.2.

Lemma 5.2. Up to the coordinate shift, solutions of (F ′
i )

2 = ai + biFi + ciF
2
i

are as follows:

Fi(t) =



bi
4 t

2 − ai

bi
, bi ̸= 0 and ci = 0,

e
√
cit − bi

2ci
, ci > 0 and D′ = 0,

− bi±
√
D′ cosh(

√
cit)

2ci
, ci > 0 and D′ > 0,

− bi−
√
D′ sin(

√
−cit)

2ci
, ci < 0 and D′ > 0,

− bi−
√
−D′ sinh(

√
cit)

2ci
, ci > 0 and D′ < 0.

Proposition 5.1. Let Σ be a non-planar separable minimal surface corre-
sponding to (C1) in Lemma 5.1. Then, up to the coordinate change, Σ is a
generalized Scherk’s tower as follows (see Figure 1):

cosh
(√

Ã(Ã+B̃)x
)

Ã(Ã+B̃)
+

cosh
(√

−ÃB̃y
)

ÃB̃
+

sin
(√

−B̃(Ã+B̃)z
)

B̃(Ã+B̃)
= 0,(5-2)

where Ã > 0, B̃ < 0 and Ã+ B̃ > 0.
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Figure 1. Continuous deformation of separable minimal surfaces.

5.1.2. Case (C2).

Proposition 5.2. Let ΣB̃ be a non-planar separable minimal surface in Propo-

sition 5.1. Then, the following catenoid ΣÃ is a limit of ΣB̃ as B̃ → Ã (see
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Figure 1): For |Ã|> 0,

Ã2

4
(x2 + z2) = cosh2

(
|Ã|
2
y

)
.(5-3)

After suitable translation x→ x+ 2
Ã
, the limit Ã→ 0 in the equation (5-3) is

a plane. It is easy to verify that there are no examples of non-planar separable
minimal surfaces in (C3).

We will apply our technique to get the complete classification of zero mean
curvature surfaces in the Lorentzian 3-space in future work.
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[7] S. Kaya and R. López, Classification of zero mean curvature surfaces of separable type
in Lorentz-Minkowski space, Tohoku Math. J. (2) 74 (2022), no. 2, 263–286. https:
//doi.org/10.2748/tmj.20210120a

[8] W. Meeks III, The theory of triply periodic minimal surfaces, Indiana Univ. Math. J.
39 (1990), no. 3, 877–936. https://doi.org/10.1512/iumj.1990.39.39043

[9] J. C. C. Nitsche, Lectures on minimal surfaces. Vol. 1, translated from the German by

Jerry M. Feinberg, Cambridge Univ. Press, Cambridge, 1989.
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