IMBEDDINGS OF MANIFOLDS DEFINED ON AN O-MINIMAL STRUCTURE ON $(\mathbb{R}, +, \cdot, <)$

TOMOHIRO KAWAKAMI

ABSTRACT. Let M be an o-minimal structure on the standard structure $\mathfrak{R}:=(\mathbb{R},+,\cdot,<)$ of the field of real numbers. We study $C^r\mathfrak{S}$ manifolds and $C^r\mathfrak{S}\text{-}G$ manifolds $(0\leq r\leq \omega)$ which are generalizations of Nash manifolds and Nash G manifolds. We prove that if M is polynomially bounded, then every $C^r\mathfrak{S}$ $(0\leq r<\infty)$ manifold is $C^r\mathfrak{S}$ imbeddable into some \mathbb{R}^n , and that if M is exponential and G is a compact affine $C^\omega\mathfrak{S}$ group, then each compact $C^\infty\mathfrak{S}\text{-}G$ manifold is $C^\infty\mathfrak{S}\text{-}G$ imbeddable into some representation of G.

1. Introduction

M. Shiota [15] proved that every C^r $(r < \infty)$ Nash manifold is C^r Nash imbeddable into some \mathbb{R}^n , and that for any compact or compactifiable C^∞ manifold X of positive dimension, there exists a uncountable family of $\{Y_\lambda\}_{\lambda\in\Lambda}$ of nonaffine Nash manifolds such that each Y_λ is C^∞ diffeomorphic to X and that Y_λ is not Nash diffeomorphic to Y_μ for $\lambda\neq\mu$. Here a C^∞ manifold is compactifiable if it is C^∞ diffeomorphic to the interior of some compact C^∞ manifold with boundary, and a Nash manifold is affine if it admits a Nash imbedding into some \mathbb{R}^n .

There are results on equivariant generalizations of Nash manifolds [7], [9].

In the present paper we are concerned with generalizations of C^r $(r < \infty)$ Nash imbeddings of C^r $(r < \infty)$ Nash manifolds in an ominimal structure on the standard structure $\Re := (\mathbb{R}, +, \cdot, <)$ of the field \mathbb{R} of real numbers. O-minimal structures have desirable properties, and some of good references of them are [2], [3].

Received June 27, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 14P10, 14P15, 14P20, 57S05, 57S15, 58A07, 03C.

Key words and phrases: Nash G manifolds, $C^{\infty}G$ manifolds, affine, o-minimal.

In this paper M denotes an o-minimal structure on \mathfrak{R} , a subset of \mathbb{R}^n definable in a structure M means it is definable in M with parameters, \mathfrak{S} stands for the collection of all subsets of \mathbb{R}^n $(n \in \mathbb{N})$ definable in M, an \mathfrak{S} set means an element of \mathfrak{S} , and all manifolds do not have boundaries unless otherwise stated.

Let r be a non-negative integer, ∞ or ω . A C^r manifold X is called a $C^r\mathfrak{S}$ manifold if it admits a finite system of charts $\{\phi_i: U_i \longrightarrow \mathbb{R}^k\}$ such that each gluing map $\phi_j \circ \phi_i^{-1} | \phi_i(U_i \cap U_j) : \phi_i(U_i \cap U_j) \longrightarrow \phi_j(U_i \cap U_j)$ is a $C^r\mathfrak{S}$ diffeomorphism (an \mathfrak{S} homeomorphism if r=0), where k denotes the dimension of X. We say that a $C^r\mathfrak{S}$ manifold is affine if it is $C^r\mathfrak{S}$ imbeddable into some \mathbb{R}^n . If $M=\mathfrak{R}$ (resp. $\mathbf{R}_{\exp}=(\mathbb{R},+,\cdot,<,\exp)$), then a $C^\omega\mathfrak{S}$ manifold is called a Nash manifold [15] (resp. an exponentially Nash manifold [8]). Remark that the family of Nash manifolds is the smallest family of $C^\omega\mathfrak{S}$ manifolds.

We call M polynomially bounded if for every function $f: \mathbb{R} \longrightarrow \mathbb{R}$ definable in M, there exist an integer N and a real number x_0 such that $|f(x)| \leq x^N$ for any $x > x_0$. Otherwise, M is called exponential by a result of C. Miller [12]. Notice that \mathfrak{R} is polynomially bounded. If M is exponential, then the smallest family of $C^{\omega}\mathfrak{S}$ manifolds is the family of exponentially Nash manifolds.

THEOREM 1.1. Let M be polynomially bounded and let r be a non-negative integer. Then every $C^r\mathfrak{S}$ manifold is affine.

Remark that if $r = \infty$, then Theorem 1.1 is not true because there exist uncountably many compact nonaffine Nash manifolds when $M = \Re [15]$ and every C^{∞} Nash diffeomorphism is a C^{ω} Nash diffeomorphism [11].

By a way similar to define Nash G manifolds and affine Nash G manifolds when G is a Nash group, we can define $C^r\mathfrak{S}$ -G $(0 \le r \le \omega)$ manifolds and affine $C^r\mathfrak{S}$ -G $(0 \le r \le \omega)$ manifolds when G is a $C^r\mathfrak{S}$ group (See Definition 2.4 and 2.5).

THEOREM 1.2. Let M be exponential and let G be a compact affine $C^{\infty}\mathfrak{S}$ group. Then every compact $C^{\infty}\mathfrak{S}$ -G manifold is affine.

Theorem 1.2 is an o-minimal version of a result of R. S. Palais [13]. In section 2 we state preliminary results. We prove our results in section 3 and 4.

2. $C^r\mathfrak{S}$ manifolds and $C^r\mathfrak{S}$ -G manifolds

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be \mathfrak{S} sets. A map $f: X \longrightarrow Y$ is called an \mathfrak{S} map if the graph of $f \subset X \times Y \subset \mathbb{R}^n \times \mathbb{R}^m$ is an \mathfrak{S} set.

Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be open \mathfrak{S} sets and let r be a non-negative integer, ∞ or ω . A C^r map $f: U \longrightarrow V$ is called a $C^r\mathfrak{S}$ map if it is an \mathfrak{S} map. A $C^r\mathfrak{S}$ map $h: U \longrightarrow V$ is called a $C^r\mathfrak{S}$ diffeomorphism (an \mathfrak{S} homeomorphism if r = 0) if there exists a $C^r\mathfrak{S}$ map $k: V \longrightarrow U$ such that $h \circ k = id$ and $k \circ h = id$.

THEOREM 2.1 (cf. [3]). Let $S_1, \dots, S_k \subset \mathbb{R}^n$ be \mathfrak{S} sets and let r be a positive integer.

- (1) (Cell decomposition) There exists a C^r cell decomposition of \mathbb{R}^n compatible with $\{S_1, \dots, S_k\}$.
- (2) (Whitney stratification) There exists a finite C^r Whitney stratification of \mathbb{R}^n compatible with $\{S_1, \dots, S_k\}$, with each stratum a C^r cell in \mathbb{R}^n .
- (3) (Triangulation) Let $S \subset \mathbb{R}^n$ be an \mathfrak{S} set with $S_1, \dots, S_k \subset S$. Then there exist a finite simplicial complex K in \mathbb{R}^n and an \mathfrak{S} map $\phi: S \longrightarrow \mathbb{R}^n$ such that ϕ maps S and each S_i homeomorphically onto a union of open simplexes of K.

Theorem 2.1 allows us to define the dimension of an $\mathfrak S$ subset X of $\mathbb R^n$ by

 $\dim X = \max \{\dim \Gamma | \Gamma \text{ is a } C^r \text{ submanifold of } \mathbb{R}^n \text{ contained in } X \}.$

One can easily see that the above dimension is well-defined.

EXAMPLE 2.2. (1) Let M be exponential. Then the C^{∞} function $F: \mathbb{R} \longrightarrow \mathbb{R}$ defined by

$$F(x) = \begin{cases} 0 & \text{if } x \le 0 \\ e^{-1/x} & \text{if } x > 0 \end{cases}$$

is a $C^{\infty}\mathfrak{S}$ function but not a C^{ω} function. Such a function does not exist in the usual Nash category. Recall that every C^{∞} Nash map is a C^{ω} Nash map [11].

- (2) It is well-known that the dimension of a semialgebraic set coincides with that of its Zariski closure (cf. [1]). But the Zariski closure of the graph of the exponential function $\exp : \mathbb{R} \longrightarrow \mathbb{R}$ in \mathbb{R}^2 is the whole space \mathbb{R}^2 . Hence if M is exponential, then in general the dimension of an \mathfrak{S} set and that of its Zariski closure do not coincide.
- (3) A non-constant periodic function $\mathbb{R} \longrightarrow \mathbb{R}$ is not an \mathfrak{S} function in any M.

Let r be a non-negative integer, ∞ or ω . We can define $C^r\mathfrak{S}$ submanifolds of \mathbb{R}^n , $C^r\mathfrak{S}$ manifolds, $C^r\mathfrak{S}$ maps, $C^r\mathfrak{S}$ diffeomorphisms, and affine $C^r\mathfrak{S}$ manifolds as well as Nash ones (cf. [16]). Remark that the inverse function theorem is true in the $C^r\mathfrak{S}$ (r > 0) category.

Notice that we do not assume that a $C^r\mathfrak{S}$ submanifold of \mathbb{R}^n admits a finite family of charts. By Theorem 2.1 (3) and the proof of I.3.9 [16], a $C^r\mathfrak{S}$ (r>0) submanifold of \mathbb{R}^n admits such a family, therefore it is of course a $C^r\mathfrak{S}$ manifold.

It is known that there exists a nonaffine Nash manifold [15], and that there exists a nonaffine exponentially Nash manifold [8]. However we do not know whether there exists a nonaffine $C^{\omega}\mathfrak{S}$ manifold for any M or not.

PROPOSITION 2.3 (cf. [3]). If X is a nonempty \mathfrak{S} subset of \mathbb{R}^n , then $\dim \overline{X} = \dim X$ and $\dim X > \dim(\overline{X} - X)$, where $\dim \emptyset = -\infty$.

We define some notions to consider $C^r\mathfrak{S}$ -G manifolds.

DEFINITION 2.4. Let r be a non-negative integer, ∞ or ω .

- (1) A group G is called a $C^r\mathfrak{S}$ group (resp. an affine $C^r\mathfrak{S}$ group) if G is a $C^r\mathfrak{S}$ manifold (resp. an affine $C^r\mathfrak{S}$ manifold) and that the multiplication $G \times G \longrightarrow G$ and the inversion $G \longrightarrow G$ are $C^r\mathfrak{S}$ maps.
- (2) Let G be a $C^r\mathfrak{S}$ group. A subgroup K of G is said to be a $C^r\mathfrak{S}$ subgroup of G if K is a $C^r\mathfrak{S}$ submanifold of G.
- (3) Let G and G' be $C^r\mathfrak{S}$ groups. A group homomorphism $G \longrightarrow G'$ is called a $C^r\mathfrak{S}$ group homomorphism if it is a $C^r\mathfrak{S}$ map. A $C^r\mathfrak{S}$ group homomorphism $f:G \longrightarrow G'$ is said to be a $C^r\mathfrak{S}$ group isomorphism if there exists a $C^r\mathfrak{S}$ group homomorphism $h:G' \longrightarrow G$ such that $f \circ h = id$ and $h \circ f = id$.

(4) A representation of a $C^r\mathfrak{S}$ group G means a group homomorphism from G to some $GL(\mathbb{R}^n)$ which is of class $C^r\mathfrak{S}$. We use a representation as a representation space.

Remark that a $C^{\omega}\mathfrak{S}$ group is called a Nash group [10] (resp. an exponentially Nash group [8]) if M is \mathfrak{R} (resp. \mathbf{R}_{exp}). Moreover remark that one-dimensional connected Nash groups are classified by J. J. Madden and C. H. Stanton [10].

DEFINITION 2.5. Let r be a non-negative integer, ∞ or ω and let G be a $C^r\mathfrak{S}$ group.

- (1) A $C^r\mathfrak{S}$ submanifold in a representation Ω of G is called a $C^r\mathfrak{S}$ -G submanifold of Ω if it is G invariant.
- (2) A $C^r\mathfrak{S}$ -G manifold is a pair (X,θ) consisting of a $C^r\mathfrak{S}$ manifold and a group action θ of G on X such that $\theta: G \times X \longrightarrow X$ is a $C^r\mathfrak{S}$ map. For simplicity of notation, we write X instead of (X,θ) .
- (3) Let X and Y be $C^r\mathfrak{S}$ -G manifolds. A $C^r\mathfrak{S}$ map $f: X \longrightarrow Y$ is called a $C^r\mathfrak{S}$ -G map if it is a G map. A $C^r\mathfrak{S}$ -G map $h: X \longrightarrow Y$ is said to be a $C^r\mathfrak{S}$ -G diffeomorphism (an \mathfrak{S} -G homeomorphism if r=0) if there exists a $C^r\mathfrak{S}$ -G map $k: Y \longrightarrow X$ such that $h \circ k = id$ and $k \circ h = id$.
- (4) We say that a $C^r\mathfrak{S}$ -G manifold is an affine $C^r\mathfrak{S}$ -G manifold if it is $C^r\mathfrak{S}$ -G diffeomorphic (\mathfrak{S} -G homeomorphic if r=0) to a $C^r\mathfrak{S}$ -G submanifold of some representation of G.

Let G be an affine $C^{\infty}\mathfrak{S}$ group. Then notice that every closed subgroup of G which is an \mathfrak{S} set is a $C^{\infty}\mathfrak{S}$ subgroup by the fact that each closed subgroup of a Lie group is a Lie subgroup of it.

Note that for any M, a Nash group (resp. an affine Nash group) is a $C^{\omega}\mathfrak{S}$ group (resp. an affine $C^{\omega}\mathfrak{S}$ group), and that a Nash G manifold (resp. an affine Nash G manifold) is a $C^{\omega}\mathfrak{S}$ -G manifold (resp. an affine $C^{\omega}\mathfrak{S}$ -G manifold).

THEOREM 2.6 (Theorem 1 page 54 [17]). Let $U \subset \mathbb{R}^n$ be an open set and let $V \subset \mathbb{R}^n$ be a nonsingular algebraic set. If $f: U \longrightarrow \mathbb{R}$ is a C^{∞} function such that $f|U \cap V$ is a polynomial function, then for each compact set $H \subset U, \epsilon > 0, q \in \mathbb{N}$, there exists a polynomial function $F: \mathbb{R}^n \longrightarrow \mathbb{R}$ such that:

(a)
$$\max_{x \in H} \left| \frac{\partial^r (F-f)}{\partial x_1^{i_1} \cdots \partial x_n^{i_n}} (x) \right| < \epsilon, \ r = i_1 + \cdots + i_n, \ 0 \le r \le q.$$

(b)
$$F|V \cap U = f|V \cap U$$
.

We use the following remark to prove a slice theorem in the equivariant o-minimal category.

REMARK 2.7. Let r be ω or ∞ . Then every compact affine $C^r\mathfrak{S}$ group G is $C^r\mathfrak{S}$ -G diffeomorphic to a $C^r\mathfrak{S}$ -G submanifold of some representation of G.

Proof. We only have to prove the result when $r = \omega$ because the other case is proved similarly. Since G is compact, G can be $C^{\infty}G$ imbeddable into some representation Ω of G. Let i denote a $C^{\infty}G$ imbedding $G \longrightarrow \Omega$. We may assume that G is a $C^{\omega}G$ submanifold of some \mathbb{R}^n because G is affine. By Theorem 2.6, there exists a polynomial map $F: \mathbb{R}^n \longrightarrow \Omega$ such that F|G is an approximation of i. Since G is compact, averaging F, we may assume that F|G is a polynomial G map. If this approximation is sufficiently close, then F|G is a $C^{\infty}G$ imbedding by 1.4 [4], hence F|G is a $C^{\omega}G$ -G imbedding. Thus G is $C^{\omega}G$ -G diffeomorphic to a $C^{\omega}G$ -G submanifold F(G) of G.

Recall universal G vector bundles (cf. [7]).

DEFINITION 2.8. Suppose that G is a compact Lie group. Let Ω be an n-dimensional representation of G and B the representation map $G \longrightarrow GL_n(\mathbb{R})$ of Ω . Suppose further that $M(\Omega)$ denotes the vector space of (n,n)-matrices with the action $(g,A) \in G \times M(\Omega) \longrightarrow B(g)^{-1}AB(g) \in M(\Omega)$. For any positive integer k, we define the vector bundle $\gamma(\Omega,k) = (E(\Omega,k),u,G(\Omega,k))$ as follows:

$$G(\Omega, k) = \{A \in M(\Omega) | A^2 = A, A = A', TrA = k\},$$

$$E(\Omega, k) = \{(A, v) \in G(\Omega, k) \times \Omega | Av = v\},$$

$$u: E(\Omega, k) \longrightarrow G(\Omega, k): u((A, v)) = A,$$

where A' denotes the transposed matrix of A. Then $G(\Omega, k)$ and $E(\Omega, k)$ are algebraic sets. Since the action on $\gamma(\Omega, k)$ is algebraic, it is an

algebraic G vector bundle. We call it the universal G vector bundle associated with Ω and k. Since $G(\Omega, k)$ and $E(\Omega, k)$ are nonsingular, $\gamma(\Omega, k)$ is a Nash G vector bundle.

The following proposition is obtained in a similar way of the usual equivariant Nash cases [9].

PROPOSITION 2.9. Let G be a compact affine $C^{\omega}\mathfrak{S}$ group and let X be a $C^{\omega}\mathfrak{S}$ -G submanifold of a representation Ω of G. Then there exists a $C^{\omega}\mathfrak{S}$ -G tubular neighborhood (U,p) of X in Ω .

Notice that Proposition 2.9 remains valid in the $C^{\infty}\mathfrak{S}$ category.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we recall the following two results [3].

THEOREM 3.1 [3]. Let $A \subset \mathbb{R}^n$ be a closed \mathfrak{S} set and let r be a non-negative integer. Then there exists a $C^r\mathfrak{S}$ function f on \mathbb{R}^n with $A = f^{-1}(0)$.

COROLLARY 3.2. Let X be an affine $C^r\mathfrak{S}$ $(0 \le r < \infty)$ manifold. Then X can be $C^r\mathfrak{S}$ imbedded into some \mathbb{R}^n such that X is closed in \mathbb{R}^n . Moreover it is possible to $C^r\mathfrak{S}$ imbed into some \mathbb{R}^k such that X is bounded and $\overline{X} - X$ consists of at most one point.

Proof. We may assume that X is noncompact because the result is clear when X is compact. Let X be a $C^r\mathfrak{S}$ submanifold of \mathbb{R}^{n-1} . By Proposition 2.3, $\overline{X} - X$ is a closed \mathfrak{S} set. Applying Theorem 3.1, we have a $C^r\mathfrak{S}$ function f on \mathbb{R}^{n-1} with $\overline{X} - X = f^{-1}(0)$. Hence considering the graph of 1/f on X in place of X, we obtain the first half of the corollary. For the latter half, suppose that X is contained and closed in \mathbb{R}^n . Let $s: \mathbb{R}^n \longrightarrow S^n \subset \mathbb{R}^{n+1}$ be the stereographic projection. Then s(X) satisfies the requirements of the latter half. \square

Recall that a subset of \mathbb{R}^n is $locally\ closed$ if it is the intersection of an open set and a closed set.

PROPOSITION 3.3 [3]. Suppose that $X \subset \mathbb{R}^n$ is a locally closed \mathfrak{S} set and that f and g are $C^0\mathfrak{S}$ functions on X with $f^{-1}(0) \subset g^{-1}(0)$. If

M is polynomially bounded, then there exist an integer N and a $C^0\mathfrak{S}$ function $h: X \longrightarrow \mathbb{R}$ such that $g^N = hf$ on X. In particular, for any compact subset K of X, there exists a positive constant c such that $|g^N| \leq c|f|$ on K

Proof of Theorem 1.1. Let X be a $C^r\mathfrak{S}$ manifold. If dim X=0 then X consists of finitely many points. Thus the result holds.

Assume that $m := \dim X \ge 1$. Let $\{\phi_i : U_i \longrightarrow \mathbb{R}^m\}_{i=1}^l$ be a $C^r\mathfrak{S}$ atlas of X. Then each $\phi_i(U_i)$ is a noncompact $C^r\mathfrak{S}$ submanifold of \mathbb{R}^m . Hence by Corollary 3.2, we have a $C^r\mathfrak{S}$ imbedding $\phi_i' : \phi_i(U_i) \longrightarrow \mathbb{R}^{m'}$ such that the image is bounded in $\mathbb{R}^{m'}$ and

$$\overline{\phi_i'\circ\phi_i(U_i)}-\phi_i'\circ\phi_i(U_i)$$

consists of one point, say 0. Set

$$\eta: \mathbb{R}^{m'} \longrightarrow \mathbb{R}^{m'}, \eta(x_1, \cdots, x_{m'}) = \left(\sum_{j=1}^{m'} x_j^{2k} x_1, \cdots, \sum_{j=1}^{m'} x_j^{2k} x_{m'}\right),$$
 $q_i: U_i \longrightarrow \mathbb{R}^{m'}, \eta \circ \phi_i' \circ \phi_i,$

for a sufficiently large integer k. Then g_i is a $C^r\mathfrak{S}$ imbedding of U_i into $\mathbb{R}^{m'}$. Moreover the extension $\tilde{g}_i: X \longrightarrow \mathbb{R}$ of g_i is defined by $\tilde{g}_i = 0$ on $X - U_i$.

We now prove that \tilde{g}_i is of class $C^r\mathfrak{S}$. It is sufficient to see this on each $C^r\mathfrak{S}$ coordinate neighborhood of X. Hence we may assume that X is open in \mathbb{R}^m . We only have to prove that for any sequence $\{a_j\}_{j=1}^\infty$ in U_i convergent to a point of $X-U_i$ and for any $\alpha\in\mathbb{N}^m$ with $|\alpha|\leq r$, $\{D^\alpha g_i(a_j)\}_{j=1}^\infty$ converges to 0. On the other hand, $g_i=(\sum_{j=1}^{m'}\phi_{ij}^{2k}\phi_{i1},\cdots\sum_{j=1}^{m'}\phi_{ij}^{2k}\phi_{im'})$, where $\phi_i'\circ\phi_i=(\phi_{i1},\cdots,\phi_{im'})$. Each ϕ_{ij} is bounded, and every $\{\phi_{ij}(a_i)\}_{i=1}^\infty$ converges to 0, and

$$|D^{\alpha}(\phi_{ij}^{2k}\phi_{is})|$$

$$=|\sum_{\beta+\gamma=\alpha}(\alpha!/(\beta!\gamma!))D^{\beta}\phi_{ij}^{2k}D^{\gamma}\phi_{is}|$$

$$\leq C\sum_{\beta_{1}+\cdots+\beta_{l'}+\gamma=\alpha,\beta_{i}\neq0}|\phi_{ij}^{2k-l'}D^{\beta_{1}}\phi_{ij}\cdots D^{\beta_{l'}}\phi_{ij}D^{\gamma}\phi_{is}|$$

$$\leq C'|\phi_{ij}^{2k-\gamma}|\psi,$$

Imbeddings of manifolds defined on O-minimal structures

where C, C' are constants, and ψ is the positive $C^0\mathfrak{S}$ function defined by

$$\psi(x) = \max \left\{ 1, \sum_{eta_1 + \cdots + eta_{l'} + \gamma = lpha} |D^{eta_1} \phi_{ij}(x) \cdots D^{eta_{l'}} \phi_{ij}(x) D^{\gamma} \phi_{is}(x)|
ight\}.$$

Define

$$\theta_{ij}(x) = \begin{cases} \min\{|\phi_{ij}(x)|, 1/\psi(x)\} & \text{on } U_i \\ 0 & \text{on } X - U_i, \end{cases}$$

$$\tilde{\phi_{ij}} = \begin{cases} \phi_{ij} & \text{on } U_i \\ 0 & \text{on } X - U_i. \end{cases}$$

Then θ_{ij} and $\tilde{\phi_{ij}}$ are $C^0\mathfrak{S}$ functions on X such that

$$X - U_i \subset \theta_{ij}^{-1}(0) = \tilde{\phi_{ij}}^{-1}(0).$$

Hence by Proposition 3.3 we have $|\tilde{\phi_{ij}}^{l''}| \leq d\theta_{ij}$ on some open \mathfrak{S} neighborhood V of $X - U_i$ in X for some integer l'', where d is a constant. On the other hand, by the definition of θ_{ij} ,

$$|\psi \theta_{ij}| \leq 1 \text{ on } U_i.$$

Hence the above argument proves that

$$|D^{\alpha}(\phi_{ij}^{2k}\phi_{is})| \le c'|\phi_{ij}^{2k-r-l''}|$$

on $U_i \cap V$, where c' is a constant and we take k such that $2k \geq r + l'' + 1$. Hence each \tilde{g}_i is of class $C^r \mathfrak{S}$. It is easy to see that

$$\prod_{i=1}^{l} \tilde{g}_i : X \longrightarrow \mathbb{R}^{lm'}$$

is a $C^r\mathfrak{S}$ imbedding.

4. Proof of Theorem 1.2

For the proof of Theorem 1.2, we prove the following slice theorem in the equivariant o-minimal category. Equivariant C^{∞} version of it is well known (cf. [5])

THEOREM 4.1. Suppose that G is a compact affine $C^{\infty}\mathfrak{S}$ group, X is a $C^{\infty}\mathfrak{S}$ -G manifold, and that $x \in X$. Then there exists a linear $C^{\infty}\mathfrak{S}$ slice at x in X.

To prove Theorem 4.1, we need several definitions and results. Our proof of Theorem 4.1 is a modification of that of Theorem 2.5 [6].

Let $A \subset \mathbb{R}^m$ be an \mathfrak{S} set. A $C^0\mathfrak{S}$ map $f: A \longrightarrow \mathbb{R}^n$ is called \mathfrak{S} trivial if there exist $k \in \mathbb{N}$ and a $C^0\mathfrak{S}$ map $g: A \longrightarrow \mathbb{R}^k$ such that $a \mapsto (f(a), g(a))$ is a homeomorphism of A onto $f(A) \times g(A)$.

THEOREM 4.2 (Local triviality) [3]. Let $A \subset \mathbb{R}^m$ be an \mathfrak{S} set and let $f: A \longrightarrow \mathbb{R}^n$ be a $C^0\mathfrak{S}$ map. Then there exists a partition $\{C_1, \dots, C_l\}$ of f(A) into \mathfrak{S} sets such that each $f|f^{-1}(C_i)$ is \mathfrak{S} trivial.

Let G be a compact Lie group and let Ω be a representation of G. Then the algebra $\mathbb{R}[\Omega]^G$ of G invariant polynomials on Ω is finitely generated [18]. Let p_1, \dots, p_l be G invariant polynomials on Ω which generate $\mathbb{R}[\Omega]^G$ and let

$$p: \Omega \longrightarrow \mathbb{R}^l, p(x) = (p_1(x), \cdots, p_l(x)).$$

Then $p:\Omega\longrightarrow\mathbb{R}^l$ is a proper polynomial map. Notice that every polynomial map is an $\mathfrak S$ map in any M. Suppose that X is a G invariant $\mathfrak S$ subset of Ω . Then $p(\Omega)$ and p(X) are $\mathfrak S$ subsets of \mathbb{R}^l . Moreover p induces the map $j:\Omega/G\longrightarrow\mathbb{R}^l$ such that $p=j\circ\pi$, where $\pi:\Omega\longrightarrow\Omega/G$ denotes the orbit map. Then j is a closed imbedding. Hence we identify X/G ($\subset \Omega/G$) with an $\mathfrak S$ subset j(X/G) ($\subset j(\Omega/G)$) of \mathbb{R}^l .

PROPOSITION 4.3. Let G be a compact affine $C^{\infty}\mathfrak{S}$ group and let X be a G invariant \mathfrak{S} subset of a representation of G. Then the orbit space X/G admits a structure of \mathfrak{S} set such that:

(a) The orbit map $\pi: X \longrightarrow X/G$ is an $\mathfrak S$ map and there exists a decomposition of X/G into finitely many $\mathfrak S$ sets T_1, \cdots, T_s such that each $\pi|\pi^{-1}(T_k): \pi|\pi^{-1}(T_k) \longrightarrow T_k$ admits a $C^0\mathfrak S$ section.

(b) For any map f from X/G to any \mathfrak{S} set Y, f is an \mathfrak{S} map if and only if so is $f \circ \pi$.

Proof. By the construction of definable structure of X/G, π is an $\mathfrak S$ map. By Theorem 4.2, there exists a decomposition of X/G into finitely many $\mathfrak S$ sets $\{T_k\}$ such that each $\pi|\pi^{-1}(T_k):\pi^{-1}(T_k)\longrightarrow T_k$ admits a $C^0\mathfrak S$ section s_k . Hence $f|T_k=f\circ(\pi\circ s_k)=(f\circ\pi)\circ s_k$. Thus f is an $\mathfrak S$ map if so is $f\circ\pi$, this proves Property (b).

PROPOSITION 4.4. Let G be a compact affine $C^{\infty}\mathfrak{S}$ group. Suppose that X is an affine $C^{\infty}\mathfrak{S}$ -G manifold with free action. Then the orbit space X/G admits an affine $C^{\infty}\mathfrak{S}$ manifold structure such that:

- (a) The orbit map $\pi: X \longrightarrow X/G$ is a $C^{\infty}\mathfrak{S}$ map.
- (b) For any map f from X/G to any affine $C^{\infty}\mathfrak{S}$ manifold Y, f is a $C^{\infty}\mathfrak{S}$ map.

if and only if so is $f \circ \pi$.

Proof. Since G is compact and by a fundamental fact of $C^{\infty}G$ manifolds, X/G is a C^{∞} manifold, π is a C^{∞} map, for any map $f: X/G \longrightarrow Y$, f is of class C^{∞} if and only if so is $f \circ \pi$. Notice that X/G is an $\mathfrak S$ set. Hence X/G is an affine $C^{\infty}\mathfrak S$ manifold. By construction, π is an $\mathfrak S$ map. Hence π is a $C^{\infty}\mathfrak S$ map. Applying Theorem 4.2 to π , f is an $\mathfrak S$ map if so is $f \circ \pi$, hence f is of class $C^{\infty}\mathfrak S$ if and only if so is $f \circ \pi$. Therefore our proposition is proved.

PROPOSITION 4.5. Let G be a compact affine $C^{\infty}\mathfrak{S}$ group. Suppose that K is a compact $C^{\infty}\mathfrak{S}$ subgroup of G and that S is an affine $C^{\infty}\mathfrak{S}$ -K manifold. Then the twisted product $G \times_K S$ with the standard G action $G \times (G \times_K S) \longrightarrow G \times_K S, (g, [g', s]) \mapsto [gg', s]$ is a $C^{\infty}\mathfrak{S}$ -G manifold.

Proof. The product K manifold $G \times S$ with the K action $(k,(g,s)) \mapsto (gk^{-1},ks)$ is an affine $C^{\infty}\mathfrak{S}$ -K manifold by Remark 2.7. Since the action of K on $G \times S$ is free and by Proposition 4.4, $G \times_K S$ is an affine $C^{\infty}\mathfrak{S}$ manifold. Clearly the standard action of G on $G \times_K S$ is of class C^{∞} . Let $\pi: G \times S \longrightarrow G \times_K S$ be the orbit map. Then π is a $C^{\infty}\mathfrak{S}$ map, in particular it is an \mathfrak{S} map. Clearly the action of G on $G \times S$

defined by $G \times (G \times S) \longrightarrow G \times S$, $(g, (g', s)) \mapsto (gg', s)$ is of class $C^{\infty}\mathfrak{S}$. Since the graph of the standard action on $G \times_K S$ is the image of that of the action map of G on $G \times S$ by $id_G \times \pi \times \pi$, it is an \mathfrak{S} set, thus it is of class $C^{\infty}\mathfrak{S}$.

We define $C^{\infty}\mathfrak{S}$ slices and linear $C^{\infty}\mathfrak{S}$ slices in a similar way of smooth slices and linear smooth slices (cf. [5]).

DEFINITION 4.6. Let G be a compact affine $C^{\infty}\mathfrak{S}$ group. Suppose that X is a $C^{\infty}\mathfrak{S}$ -G manifold, and that K is a compact $C^{\infty}\mathfrak{S}$ subgroup of G.

(1) We say that a K invariant $C^{\infty}\mathfrak{S}$ submanifold S of X is a $C^{\infty}\mathfrak{S}$ -K slice if GS is open in X, S is affine as a $C^{\infty}\mathfrak{S}$ -K manifold, and

$$\mu: G \times_K S \longrightarrow GS \ (\subset X), [q, x] \mapsto qx$$

is a $C^{\infty}\mathfrak{S}$ -G diffeomorphism.

Remark that μ is always an \mathfrak{S} map because its graph is the image of that of $G \times S \longrightarrow GS$, $(g,s) \mapsto gs$ by $\pi \times id_{GS}$, where π denotes the orbit map $G \times S \longrightarrow G \times_K S$.

- (2) A $C^{\infty}\mathfrak{S}$ -K slice S is called *linear* if there exist a representation Ω of K and a $C^{\infty}\mathfrak{S}$ -K imbedding $j:\Omega\longrightarrow X$ such that $j(\Omega)=S$.
- (3) We say that a $C^{\infty}\mathfrak{S}$ -K slice (resp. a linear $C^{\infty}\mathfrak{S}$ -K slice) S is a $C^{\infty}\mathfrak{S}$ slice (resp. a linear $C^{\infty}\mathfrak{S}$ slice) at x in X if $K = G_x$ and $x \in S$ (resp. $K = G_x$ and j(0) = x).

PROPOSITION 4.7. Let G be a compact affine $C^{\infty}\mathfrak{S}$ group and let K be a compact $C^{\infty}\mathfrak{S}$ subgroup of G. Suppose that $\pi: G \longrightarrow G/K$ denotes the orbit map. Then there exist an open K invariant \mathfrak{S} neighborhood V of eK in G/K and a $C^{\infty}\mathfrak{S}$ -K section $\sigma: V \longrightarrow G$ such that $\sigma(eK) = e$ and that V is $C^{\infty}\mathfrak{S}$ -K diffeomorphic to some representation of K. Here the actions of K on G/K and G are the following:

$$K \times G/K \longrightarrow G/K, (k, gK) \mapsto kgK,$$

$$K \times G \longrightarrow G, (k, g) \mapsto kgk^{-1}.$$

Proof. At first we show that the left coset space G/K becomes a $C^{\infty}\mathfrak{S}$ -K manifold. By Proposition 4.4, G/K becomes an affine $C^{\infty}\mathfrak{S}$ manifold such that the orbit map $\pi: G \longrightarrow G/K$ is a $C^{\infty}\mathfrak{S}$ map. Since the action map of K on G/K is the image of that of K on G defined by $K \times G \longrightarrow G, (k,g) \mapsto kg$, the action map of K on G/K is of class \mathfrak{S} . Thus G/K is a $C^{\infty}\mathfrak{S}$ -K manifold.

Furthermore, $\pi: G \longrightarrow G/K$ is a $C^{\infty}\mathfrak{S}$ -K map under the above K actions, and $e \in G$ and $eK \in G/K$ are fixed points of K. Thus the tangent spaces $T_e(G)$ at $e \in G$ and $T_{eK}(G/K)$ at $eK \in G/K$ are representations of K. Since K is compact, we may assume that they are orthogonal representation spaces. Since π is submersive, the differential $(d\pi)_e: T_e(G) \longrightarrow T_{eK}(G/K)$ is a surjective linear K map.

The tangent space $T_e(K)$ of K at $e \in K$ is a K invariant linear subspace of $T_e(G)$. Let L denote the orthogonal complement to $T_e(K)$ in $T_e(G)$. Then L is a K invariant linear subspace of $T_e(G)$ and $T_e(G) = T_e(K) \oplus L$. Moreover $q := \dim L = \dim G - \dim K = \dim G/K$, and $(d\pi)_e|_{L}: L \longrightarrow T_e(G/K)$ is a linear K isomorphism.

Using the exponential map, one can find a q-dimensional K invariant C^{∞} submanifold V^* of G such that $e \in V^*$ and $T_e(V^*) = L$.

Approximating V^* , we now construct q-dimensional K invariant $C^{\infty}\mathfrak{S}$ submanifold $V'\ni e$ of G such that $T_e(G)=T_e(K)\oplus T_e(V')$ and $(d\pi)_e|T_e(V'):T_e(V')\longrightarrow T_e(G/K)$ is a linear K isomorphism. Recall that G can be regarded as a $C^{\infty}\mathfrak{S}\text{-}G$ submanifold of some representation Ω of G by Remark 2.7. Take a $C^{\infty}K$ tubular neighborhood (W,p) of V^* in G. Let $\phi:W\longrightarrow G(\Omega,\dim K), \phi(x)=$ the normal space of V^* in G at p(x) and $\psi:W\longrightarrow \Omega, \psi(x)=x-p(x)$. Define

$$\Phi: W \longrightarrow \gamma(\Omega, \dim K) \ (\subset G(\Omega, \dim K) \times \Omega \subset M(\Omega) \times \Omega),$$

$$\Phi(x) = (\phi(x), \psi(x)).$$

Then $V^* = \Phi^{-1}(G(\Omega, \dim K))$, and Φ is a $C^{\infty}K$ map and transverse to $G(\Omega, \dim K)$. By Theorem 2.6, there exists a polynomial map $h: W' \longrightarrow M(\Omega) \times \Omega$ such that h approximates Φ and $h(e) = \Phi(e)$, where W' is an appropriate compact $C^{\infty}\mathfrak{S}$ -K manifold with $W' \ni e$ and $W' \subset W$. By averaging h, we may assume that h is a polynomial

K map. Using Proposition 2.9, one can find a $C^{\omega}\mathfrak{S}$ -K tubular neighborhood (T,\overline{p}) of $\gamma(\Omega,\dim K)$ in $M(\Omega)\times\Omega$. If this approximation is sufficiently close, the image of h lies in T. Hence composing h with \overline{p} , we have a $C^{\infty}\mathfrak{S}$ -G map $\overline{h}:W'\longrightarrow \gamma(\Omega,\dim K)$ with $\overline{h}(e)=\Phi(e)$ as an approximation of $\Phi|W'$. Thus \overline{h} is transverse to $G(\Omega,\dim K)$. Hence $V':=(\overline{h})^{-1}(G(\Omega,\dim K))\cap \mathrm{Int}\ W'$ is a $C^{\infty}\mathfrak{S}$ -K submanifold of G contained in W. If this approximation is sufficiently close, then V' has the required properties.

Hence $\pi|V':V'\longrightarrow G/K$ is a $C^\infty\mathfrak{S}$ -K map and the differential $(d(\pi|V'))_e:T_e(V')\longrightarrow T_e(G/K)$ is a linear K isomorphism. By the inverse function theorem, there exists an open \mathfrak{S} neighborhood U of e in V' such that $\pi|U:U\longrightarrow \pi(U)$ is a $C^\infty\mathfrak{S}$ diffeomorphism onto an open \mathfrak{S} neighborhood $V:=\pi(U)$ of eK in G/K. Since G is affine and K is compact, shrinking U, if necessary, we may assume that U is $C^\infty\mathfrak{S}$ -K diffeomorphic to some representation of K. Therefore

$$\sigma:=(\pi|U)^{-1}:V\longrightarrow U\subset G$$

is a $C^{\infty}\mathfrak{S}$ -K section over V of π and $\sigma(eK) = e$.

We prepare the following two lemmas obtained by a way similar to the proof of 1.2 [6] and 5.2 [5], respectively.

LEMMA 4.8. Let G be an affine $C^{\infty}\mathfrak{S}$ group and let H be a compact $C^{\infty}\mathfrak{S}$ subgroup of G. Suppose that U is an open neighborhood of H in G. Then the identity element $e \in G$ has an open \mathfrak{S} neighborhood $V \subset U$ such that HVH = V.

LEMMA 4.9. Let G be a compact affine $C^{\infty}\mathfrak{S}$ group and let K be a compact $C^{\infty}\mathfrak{S}$ subgroup of G. Suppose that S is a K invariant $C^{\infty}\mathfrak{S}$ submanifold of a $C^{\infty}\mathfrak{S}$ -G manifold of X such that S is affine as a $C^{\infty}\mathfrak{S}$ -K manifold. Then the following are equivalent.

- (1) S is a $C^{\infty}\mathfrak{S}$ -K slice in X.
- (2) GS is open in X and there exists a $C^{\infty}G$ map $\gamma: GS \longrightarrow G/K$ such that $\gamma^{-1}(eK) = S$.

Proof of Theorem 4.1. By the definition of $C^{\infty}\mathfrak{S}$ manifolds, there exists a $C^{\infty}\mathfrak{S}$ diffeomorphism f from an open \mathfrak{S} neighborhood V of X in X to an open \mathfrak{S} neighborhood B of the origin of \mathbb{R}^m , where $m=\dim X$. Let n be the dimension of a $C^{\infty}\mathfrak{S}$ submanifold $f(G(x)\cap V)$ of \mathbb{R}^m . Then the set N' of points in \mathbb{R}^m whose inner product with every point in the tangent space $T_0f(G(x)\cap V)$ is zero is a subspace of dimension m-n. Hence $N:=B\cap N'$ is a $C^{\infty}\mathfrak{S}$ submanifold of \mathbb{R}^m . Thus $S^*:=f^{-1}(N)$ is a $C^{\infty}\mathfrak{S}$ submanifold of V. Moreover we have $T_xX=T_xG(x)\oplus T_x(f^{-1}(N))$ because $T_0\mathbb{R}^m=T_0f(G(x)\cap V)\oplus T_0N$ and f is a $C^{\infty}\mathfrak{S}$ diffeomorphism. On the other hand, X admits a G_x invariant C^{∞} metric because G_x is compact. Hence using this metric, S^* is G_x invariant by the proof of 2.3 [6].

By Proposition 4.7, one can find an open G_x invariant \mathfrak{S} neighborhood W of eG_x in G/G_x and a $C^{\infty}\mathfrak{S}$ - G_x section $\gamma:W\longrightarrow G$ of the orbit map $\pi:G\longrightarrow G/G_x$ such that $\gamma(eG_x)=e$. Define

$$F: W \times S^* \longrightarrow X, F(w,s) = \gamma(w)s.$$

Since $F = (\phi | G \times S^*) \circ (\gamma \times id_{S^*})$, F is a $C^{\infty}\mathfrak{S}$ map, where ϕ denotes the group action map $G \times X \longrightarrow X$. The map $\alpha_x : G/G_x \longrightarrow G(x)$ defined by $\alpha(gG_x) = gx$ is a C^{∞} diffeomorphism, and its graph is an \mathfrak{S} set because it is the image of the graph of the map $G \longrightarrow G(x)$, $g \mapsto gx$ by $\pi \times id_{G(x)}$. Therefore α_x is a $C^{\infty}\mathfrak{S}$ diffeomorphism.

We identify $T_{(eG_x,x)}(W \times S^*)$ with $T_{eG_x}(W) \oplus T_x S^*$. Then $dF_{(eG_x,x)}(y_1,y_2) = (d\alpha_x)_{eG_x}(y_1) + (d\mathrm{id})_x(y_2), (y_1,y_2) \in T_{eG_x}W \oplus T_x S^*$. Since $T_x X = T_x G(x) \oplus T_x S^*$, and since $(d\alpha_x)_{eG_x}$ and $(d\mathrm{id})_x$ are isomorphisms, $dF_{(eG_x,x)}$ is an isomorphism. By the inverse function theorem, there exist open $\mathfrak S$ neighborhoods $U' \subset W$ of eG_x and $W' \subset S^*$ of x such that $F|(U' \times W')$ is a $C^\infty \mathfrak S$ diffeomorphism onto an open $\mathfrak S$ neighborhood of x in X. Since G_x is compact, x has an open G_x invariant neighborhood $S' \subset W' \subset S^*$.

Let $U_0 = \pi^{-1}(U')$. Then U_0 is an open $\mathfrak S$ neighborhood of G_x in G. Since G_x is compact and by Lemma 4.8, there exists an open $\mathfrak S$ neighborhood $W' \subset U_0$ of e such that $G_xW'G_x = W'$. For any subsets $A, B \subset X$, let G(A|B) denote $\{g \in G|gB \cap A \neq \emptyset\}$. Since W' is an open $\mathfrak S$ neighborhood of G_x and by 1.1.6 [14], x has an open neighborhood V_0 with $G(V_0|V_0) \subset W'$. Shrinking V_0 , if necessary, we may assume

that V_0 is an $\mathfrak S$ set. Thus $G(G_xV_0|G_xV_0)=G_x(G(V_0|V_0))G_x\subset U_0$. Hence $S:=S'\cap G_xV_0$ is an open G_x invariant $C^\infty\mathfrak S$ submanifold of S^* containing x. Moreover since G_x is compact, shrinking S, if necessary, we can find a $C^\infty\mathfrak S$ - G_x imbedding j from some representation Ω' of G_x into X such that $j(\Omega')=S$ and j(0)=x. Since $F|U'\times W':U'\times W'\longrightarrow F(U'\times W')$ is a homeomorphism, $U_0S=F(U'\times S)$ is open in X. Thus $GS=GU_0S$ is open in X. Moreover the map $I:GS\longrightarrow G/G_x$ defined by $gs\mapsto gG_x$ is well-defined and $S=l^{-1}(eG_x)$. Clearly I is a G map. By the proof of 2.5 [6], I is of class I

Therefore by Lemma 4.9, S is the required linear $C^{\infty}\mathfrak{S}$ slice at $x.\square$

To prove Theorem 1.2, we need the following two lemmas.

LEMMA 4.10. Let G be a compact affine $C^{\infty}\mathfrak{S}$ group. Suppose that X is a $C^{\infty}\mathfrak{S}$ -G manifold and $x \in X$. Then there exists a linear $C^{\infty}\mathfrak{S}$ slice S at x in X such that $G \times_{G_x} S$ is affine.

Proof. By Theorem 4.1, there exists a linear $C^{\infty}\mathfrak{S}$ slice S' at x in X. Let Ξ be a representation of G_x and let $G \times_{G_x} \Xi \longrightarrow GS' \subset X$ be a $C^{\infty}\mathfrak{S}$ -G diffeomorphism. Since G is compact and by a fundamental fact, $G \times_{G_x} \overline{D_2}$ can be $C^{\infty}G$ imbeddable into some representation Ω of G, where $\overline{D_2}$ denotes $\{x \in \Xi | ||x|| \leq 2\}$. Let i denote a $C^{\infty}G$ imbedding $G \times_{G_x} \overline{D_2} \longrightarrow \Omega$. On the other hand, we may assume that $G \times_{G_x} \operatorname{Int} \overline{D_2}$ is a $C^{\infty}\mathfrak{S}$ submanifold of some \mathbb{R}^n by Proposition 4.4. By Theorem 2.6, there exists a polynomial map $F : \mathbb{R}^n \longrightarrow \Omega$ such that $F|(G \times_{G_x} D)$ is an approximation of i, where D denotes the open unit ball of Ξ . Since G is compact, averaging F, we may assume that $F|(G \times_{G_x} D)$ is a polynomial G map. If this approximation is sufficiently close, then $F|(G \times_{G_x} D)$ is a $C^{\infty}\mathfrak{S}$ -G imbedding by 1.4 [4]. Thus $G \times_{G_x} D$ is $C^{\infty}\mathfrak{S}$ -G diffeomorphic to a $C^{\infty}\mathfrak{S}$ -G submanifold $F(G \times_{G_x} D)$ of Ω . Since D is $C^{\infty}\mathfrak{S}$ -G diffeomorphic to Ξ , we complete the proof.

LEMMA 4.11. Let M be exponential and let G be a compact affine $C^{\infty}\mathfrak{S}$ group. Suppose that D_1 and D_2 are open balls in a representation Ω of G of radius a and b with same center the origin and a < b. If $A, B \in \mathbb{R}, A \neq B$, then there exists a G invariant $C^{\infty}\mathfrak{S}$ function f on Ω such that f = A on D_1 and f = B on $\Omega - \overline{D_2}$.

Proof. We may assume that A=1 and B=0. We now construct the desired function when $\Omega=\mathbb{R}$. We may suppose that $D_1=(-a,a)$ and $D_2=(-b,b)$ are open intervals. Recall the $C^\infty\mathfrak{S}$ function F defined by

$$F(x) = \begin{cases} 0 & \text{if } x \le 0 \\ e^{-1/x} & \text{if } x > 0 \end{cases}$$

(See Example 2.2 (1)). The function $\psi: \mathbb{R} \longrightarrow \mathbb{R}$ defined by

$$\psi(x) = F(b-x)F(b+x)/(F(b-x)F(b+x) + F(x^2 - a^2))$$

is the desired function.

Hence for a general representation Ω of $G, f: \Omega \longrightarrow \mathbb{R}, f(x) = \psi(|x|)$ is the required function, where |x| denotes the standard norm of x in Ω .

Proof of Theorem 1.2. Let X be a compact $C^{\infty}\mathfrak{S}$ -G manifold and let $x\in X$. By Theorem 4.1, there exists a linear slice $G\times_{G_x}\Omega_x$ at x in X. Furthermore we may assume that $G\times_{G_x}\Omega_x$ is $C^{\infty}\mathfrak{S}$ -G diffeomorphic to a $C^{\infty}\mathfrak{S}$ -G submanifold of some representation Ξ_x of G by Lemma 4.10. Let $\phi_x:G\times_{G_x}\Omega_x$ ($\subset X$) $\longrightarrow \Xi_x$ be a $C^{\infty}\mathfrak{S}$ -G imbedding.

Since M is exponential and by Lemma 4.11, there exists a G invariant $C^{\infty}\mathfrak{S}$ function $f_x:\Omega_x\longrightarrow\mathbb{R}$ such that $f_x|D_1=1$ and $f_x|(\Omega-\overline{D_2})=0$, where D_r denotes the open ball of radius r with center the origin. Using f_x , we can extend $\phi_x|G\times_{G_x}D_1:G\times_{G_x}D_1\longrightarrow\Xi_x$ to a $C^{\infty}\mathfrak{S}-G$ map $\psi_x:X\longrightarrow\Xi_x$, and we can find a G invariant $C^{\infty}\mathfrak{S}$ map $h_x:X\longrightarrow\mathbb{R}$ such that $h_x|(G\times_{G_x}D_1)=1$ and $h_x|(X-G\times_{G_x}\overline{D_2})=0$. Since X is compact, one can find $x_1,\cdots,x_l\in X$ such that $X=\bigcup_{i=1}^l(G\times_{G_{x_i}}D_1)$. Therefore $\psi:X\longrightarrow\Xi_{x_1}\times\cdots\times\Xi_{x_l}\times\mathbb{R}^l,\psi(x)=(\psi_{x_1}(x),\cdots,\psi_{x_l}(x),h_{x_1}(x),\cdots,h_{x_l}(x))$ is the required $C^{\infty}\mathfrak{S}$ -G imbedding.

Here are two natural open questions.

PROBLEM A. Let M be polynomially bounded. Is a $C^{\infty}\mathfrak{S}$ map on an open \mathfrak{S} set of class $C^{\omega}\mathfrak{S}$? Is a $C^{\infty}\mathfrak{S}$ manifold a $C^{\omega}\mathfrak{S}$ manifold?

Notice that if M is exponential, then $F : \mathbb{R} \longrightarrow \mathbb{R}$ in Example 2.2 (1) is a $C^{\infty}\mathfrak{S}$ function but not analytic. Thus the graph of F is a $C^{\infty}\mathfrak{S}$ manifold but not a $C^{\omega}\mathfrak{S}$ manifold.

PROBLEM B. Does there exist a (compact) nonaffine $C^{\omega}\mathfrak{S}$ manifold for any M?

Notice that if $M = \Re$ (resp. \mathbf{R}_{exp}), then Problem B is negative [15] (resp. [8]).

References

- J. Bochnak, M. Coste and M. F. Roy, Géométie algébrique réelle, Ergebnisse der Mathematik, und ihrer Grenzebiete, Springer Verlag, 1987.
- [2] van den Dries, Tame topology and O-minimal structure, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press, 1998.
- [3] van den Dries and C. Miller, Geometric categories and o-minimal structure, Duke Math. J. 84 (1996), 497-540.
- [4] M. W. Hirsch, Differential topology, Springer-Verlag, 1976.
- [5] S. Illman, Every proper smooth actions of a Lie group is equivalent to a real analytic action: a contribution to Hilbert's fifth problem, Ann. of Math. Stud. 138 (1995), 189-220.
- [6] M. Kankaanrinta, Proper real analytic actions of Lie groups on manifold, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 83 (1991), 1-41.
- [7] T. Kawakami, Algebraic G vector bundles and Nash G vector bundles, Chinese J. Math. 22 (1994), 275-289.
- [8] _____, A note on exponentially Nash G manifolds and vector bundles, Sci. Bull. Josai Univ. Special Issue 2 (1997), 63-75.
- [9] _____, Nash G manifold structures of compact or compactifiable $C^{\infty}G$ manifolds, J. Math. Soc. Japan 48 (1996), 321-331.
- [10] J. J. Madden and C. H. Stanton, One-dimensional Nash groups, Pacific J. Math. 154 (1992), 331-344.
- [11] B. Malgrange, Ideals of differential functions, Oxford Univ. Press, 1966.
- [12] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259.
- [13] R. S. Palais, Imbedding of compact differential transformation groups in orthogonal representations, J. Math. Mech. 6 (1957), 673-678.
- [14] _____, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73 (1961), 295-323.
- [15] M. Shiota, Abstract Nash manifolds, Proc. Amer. Math. Soc. 96 (1986), 155-162.
- [16] _____, Nash manifolds, Lecture Note in Mathematics vol. 1269, Springer-Verlag, 1987.
- [17] A. Tognoli, Algebraic geometry and Nash functions, Academic Press, 1978.

Imbeddings of manifolds defined on O-minimal structures

[18] H. Weyl, *The classical groups* (2nd, ed.), Princeton Univ. Press, Princeton, N.J., 1946.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, WAKAYAMA UNIVERSITY, SAKAEDANI, WAKAYAMA 640-8510, JAPAN *E-mail*: kawa@math.edu.wakayama-u.ac.jp