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IMBEDDINGS OF MANIFOLDS DEFINED ON
AN O-MINIMAL STRUCTURE ON (R,+,-,<)

TOMOHIRO KAWAKAMI

ABSTRACT. Let M be an o-minimal structure on the standard struc-
ture R := (R, +, -, <) of the field of real numbers. We study €76
manifolds and C”&-G manifolds (0 < r < w) which are generaliza-
tions of Nash manifolds and Nash G manifolds. We prove that if
M is polynomially bounded, then every C™6 (0 < r < 00) mani-
fold is C"& imbeddable into some R"™, and that if M is exponential
and G is a compact affine C¥®& group, then each compact C*°&-G
manifold is C°&-G imbeddable into some representation of G.

1. Introduction

M. Shiota [15] proved that every C” (r < oo) Nash manifold is C"
Nash imbeddable into some R™, and that for any compact or compacti-
fiable C* manifold X of positive dimension, there exists a uncountable
family of {Y)}sca of nonaffine Nash manifolds such that each Y), is C*°
diffeomorphic to X and that Y) is not Nash diffeomorphic to Y, for
A # . Here a C* manifold is compactifiable if it is C*° diffeomorphic
to the interior of some compact C'™ manifold with boundary, and a
Nash manifold is affine if it admits a Nash imbedding into some R".

There are results on equivariant generalizations of Nash manifolds.
), fo). | |

In the present paper we are concerned with generalizations of C”
(r < oo0) Nash imbeddings of C™ (r < oo) Nash manifolds in an o-
minimal structure on the standard structure R := (R, +,-, <) of the
field R of real numbers. O-minimal structures have desirable properties,
and some of good references of them are {2}, [3].
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In this paper M denotes an o-minimal structure on R, a subset of R™
definable in a structure M means it is definable in M with parameters,
G stands for the collection of all subsets of R™ (n € N) definable in
M, an G set means an element of &, and all manifolds do not have
boundaries unless otherwise stated.

Let r be a non-negative integer, co or w. A C" manifold X is called
a C"6 manifold if it admits a finite system of charts {¢; : U; — R*}
such that each gluing map ¢;0; !|¢;(U;NU;) : ¢:(U;NU;) — ¢;(U;N
U;) is a C"8 diffeomorphism (an & homeomorphism if r = 0), where
k denotes the dimension of X. We say that a C"S manifold is affine
if it is C"G imbeddable into some R™. If M = R (resp. Rexp =
(R,+,, <,exp)), then a C*S manifold is called a Nash manifold [15]
(resp. an exponentially Nash manifold [8]). Remark that the family of
Nash manifolds is the smallest family of C“& manifolds.

We call M polynomially bounded if for every function f : R — R
definable in M, there exist an integer N and a real number zy such
that |f(z)| < z¥ for any = > zo. Otherwise, M is called exponential
by a result of C. Miller [12]. Notice that R is polynomially bounded.
If M is exponential, then the smallest family of C*& manifolds is the
family of exponentially Nash manifolds.

THEOREM 1.1. Let M be polynomially bounded and let r be a non-
negative integer. Then every C™G manifold is affine.

Remark that if » = co, then Theorem 1.1 is not true because there
exist uncountably many compact nonaffine Nash manifolds when M =
R [15] and every C'* Nash diffeomorphism is a C* Nash diffeomorphism
[11].

By a way similar to define Nash G manifolds and affine Nash G
manifolds when G is a Nash group, we can define C"6-G (0 < r < w)
manifolds and affine C"G-G (0 < r < w) manifolds when G is a C™S
group (See Definition 2.4 and 2.5).

THEOREM 1.2. Let M be exponential and let G be a compact affine
C*6 group. Then every compact C*°G-G manifold is affine.

Theorem 1.2 is an o-minimal version of a result of R. S. Palais [13].
In section 2 we state preliminary results. We prove our results in
section 3 and 4.
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2. C™S manifolds and C"6-G manifolds

Let X CR"and Y C R™ be & sets. A map f: X — Y is called
an & map if the graph of f (C X xY CR" x R™) is an & set.

Let U ¢ R® and V C R™ be open & sets and let 7 be a non-negative
integer, 0o or w. A C" map f : U — V is called a C"& map if it is an
S map. AC™G map h: U — V iscalled a C"& dif feomorphism (an
G homeomorphism if r = 0) if there exists a C"G map k: V — U
such that hok =id and ko h = id.

THEOREM 2.1 (cf. [3]). Let Sy,---,S,x CR™ be & sets and let r be
a positive integer.
(1) (Cell decomposition) There exists a C” cell decomposition of R"
compatible with {Sy,--- ,Sk}.
(2) (Whitney stratification) There exists a finite C" Whitney stratifica-
tion of R™ compatible with {Sy,--- , Sk}, with each stratum a C" cell
in R™.
(3) (Triangulation) Let S C R™ be an & set with Sy,---,5: C S.
Then there exist a finite simplicial complex K in R"™ and an & map
¢ : S — R"™ such that ¢ maps S and each S; homeomorphically onto
a union of open simplexes of K.

Theorem 2.1 allows us to define the dimension of an & subset X of
R™ by
dim X = max{dimT|T is a C" submanifold of R™ contained in X}.

One can easily see that the above dimension is well-defined.
EXAMPLE 2.2. (1) Let M be exponential. Then the C*° function
F : R — R defined by

0 fr<o0
F(z) = T
(2) { e Ve x>0

is a C°°® function but not a C*¥ function. Such a function does not
exist in the usual Nash category. Recall that every C™° Nash map is a
C* Nash map [11]:
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(2) It is well-known that the dimension of a semialgebraic set coincides
with that of its Zariski closure (cf. [1]). But the Zariski closure of the
graph of the exponential function exp : R — R in R? is the whole
space R?. Hence if M is exponential, then in general the dimension of
an G set and that of its Zariski closure do not coincide.

(3) A non-constant periodic function R — R is not an & function in
any M.

Let r be a non-negative integer, co or w. We can define C™& sub-
manifolds of R", C"S manifolds, C"S maps, C"& diffeomorphisms,
and affine C"G manifolds as well as Nash ones (cf. [16]). Remark that
the inverse function theorem is true in the C"& (r > 0) category.

Notice that we do not assume that a C™S submanifold of R™ admits
a finite family of charts. By Theorem 2.1 (3) and the proof of 1.3.9 [16],
a C"6 (r > 0) submanifold of R™ admits such a family, therefore it is
of course a C"G manifold.

It is known that there exists a nonaffine Nash manifold [15], and that
there exists a nonaffine exponentially Nash manifold [8]. However we
do not know whether there exists a nonaffine C*& manifold for any M
or not.

ProprosITION 2.3 (cf. [3]). If X is a nonempty & subset of R™, then
dimX = dim X and dim X > dim(X — X), where dim ) = —oo.

We define some notions to consider C™&-G manifolds.

DEFINITION 2.4. Let r be a non-negative integer, oo or w.

(1) A group G is called a C™S group (resp. an affine C™S group)
if G is a C"G manifold (resp. an affine C"& manifold) and that the
multiplication G x G — G and the inversion G — G are C™S maps.
(2) Let G be a C™S group. A subgroup K of G is said to be a C™G
subgroup of G if K is a C"G submanifold of G.

(3) Let G and G’ be C™G groups. A group homomorphism G — G’ is
called a C"& group homomorphism if it is a C™S map. A C™S group
homomorphism f : G — G’ is said to be a C"& group isomorphism
if there exists a C"& group homomorphism A : G’ — G such that
foh=idand ho f = 1d.
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(4) A representation of a C"G group G means a group homomorphism
from G to some GL(R™) which is of class C"&. We use a representation
as a representation space.

Remark that a C“G group is called a Nash group [10] (resp. an
exponentially Nash group [8]) if M is R (resp. Rexp). Moreover
remark that one-dimensional connected Nash groups are classified by
J. J. Madden and C. H. Stanton [10].

DEFINITION 2.5. Let r be a non-negative integer, oo or.w-and let G
be a C™S group.
(1) A C"S submanifold in a representation Q of G is called a C"6-G
submanifold of Q if it is G invariant.
(2) A C"6-G manifold is a pair (X,8) consisting of a C"S manifold
and a group action # of G on X suchthat 0: G x X — X isa C"S
map. For simplicity of notation, we write X instead of (X, ).
(3) Let X and Y be C"G-G manifolds. A C"G map f: X — Y is
called a C"G-G map if it is a G map. AC™S-Gmap h: X — Y is
said to be a C"&-G diffeomorphism (an &-G homeomorphism if r = 0)
if there exists a C"6-G map k : Y — X such that ho k = id and
koh =1id.
(4) We say that a C"6-G manifold is an affine C"&-G manifold if it
is C"6-G diffeomorphic (6-G homeomorphic if r = 0) to a C"6G-G
submanifold of some representation of G.

Let G be an affine C*°& group. Then notice that every closed sub-
group of G which is an G set is a C°°S subgroup by the fact that each
closed subgroup of a Lie group is a Lie subgroup of it. '

Note that for any M, a Nash group (resp. an affine Nash group) is a
C“6 group (resp. an affine C“G group), and that a Nash G manifold
(resp. an affine Nash G manifold) is a C“&-G manifold (resp. an affine
C“6-G manifold).

THEOREM 2.6 (Theorem 1 page 54 [17]). Let U C R™ be an open
set and let V C R™ be a nonsingular algebraic set. If f : U — R is a
C® function such that flU NV is a polynomial function, then for each

compact set H C U,e > 0,q € N, there exists a polynomial function
F :R™ — R such that:
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" (F—f)

§z'l...9zin (iL')l <¢ r= il + - +ina 0<r < q.
1 n

(G,) maXeeH ’

(b) FIVAU = flVNU.

We use the following remark to prove a slice theorem in the equi-
variant o-minimal category.

REMARK 2.7. Let 7 be w or co. Then every compact affine C™&
group G is C"6-G diffeomorphic to a C"G-G submanifold of some
representation of G.

Proof. We only have to prove the result when » = w because the
other case is proved similarly. Since G is compact, G can be C®G
imbeddable into some representation 2 of G. Let i denote a C®G
imbedding G — Q. We may assume that G is a C“& submanifold of
some R™ because G is affine. By Theorem 2.6, there exists a polynomial
map F : R® — Q such that F|G is an approximation of i. Since G
is compact, averaging F', we may assume that F|G is a polynomial G
map. If this approximation is sufficiently close, then F|G is a C®G
imbedding by 1.4 [4], hence F|G is a C*S-G imbedding. Thus G is
C“6-G diffeomorphic to a C“S-G submanifold F(G) of Q. o

Recall universal G vector bundles (cf. [7]).

DEFINITION 2.8. Suppose that G is a compact Lie group. Let
be an n-dimensional representation of G and B the representation map
G — GLn(R) of Q. Suppose further that M(Q) denotes the vec-
tor space of (n,n)-matrices with the action (g, A) € G x M(Q) —
B(g)"1AB(g) € M(R). For any positive integer k, we define the vector
bundle v(Q, k) = (E(Q, k),u, G(, k)) as follows:

G(k)={Ac M(Q)A2=A,A= A" TrA =k},
E(Q,k) = {(4,v) € G(Q, k) x Q|Av = v},
u: B(Q,k) — G, k) : u((A4,v)) = A,

where A’ denotes the transposed matrix of A. Then G((2, k) and E(Q, k)
are algebraic sets. Since the action on v(Q,k) is algebraic, it is an

188



Imbeddings of manifolds defined on O-minimal structures

algebraic G vector bundle. We call it the universal G vector bundle
associated with Q and k. Since G(Q, k) and E(Q,k) are nonsingular,
v(f2, k) is a Nash G vector bundle.

The following proposition is obtained in a similar way of the usual
equivariant Nash cases [9].

PROPOSITION 2.9. Let G be a compact affine C*S group and let X
be a C¥S-G submanifold of a representation Q0 of G. Then there exists
a C*&-G tubular neighborhood (U,p) of X in ().

Notice that Proposition 2.9 remains valid in the C®& category.

3. Proof of Theorem 1.1
To prove Theorem 1.1, we recall the following two results [3].

THEOREM 3.1 [3]. Let A C R™ be a closed & set and let r be a
non-negative integer. Then there exists a C™& function f on R™ with
A= f~1(0).

COROLLARY 3.2. Let X be an affine C"6 (0 < m < oo) manifold.
Then X can be C™G imbedded into some R™ such that X is closed in
R™. Moreover it is possible to C™& imbed into some R¥ such that X is
bounded and X — X consists of at most one point.

Proof. We may assume that X is noncompact because the result
is clear when X is compact. Let X be a C”G submanifold of R" 1.
By Proposition 2.3, X — X is a closed & set. Applying Theorem 3.1,
we have a C™S function f on R* ! with X — X = f~1(0). Hence
considering the graph of 1/f on X in place of X, we obtain the first
half of the corollary. For the latter half, suppose that X is contained
and closed in R”. Let s : R® — §™ < R"*! be the stereographic
projection. Then s(X) satisfies the requirements of the latter half. [J

Recall that a subset of R™ is locally closed if it is the intersection of
an open set and a closed set.

PROPOSITION 3.3 [3]. Suppose that X C R™ is a locally closed &
set and that f and g are C°S functions on X with f~1(0) ¢ g~*(0). If
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M is polynomially bounded, then there exist an integer N and a C°&
function h : X — R such that g = hf on X. In particular, for any
compact subset K of X, there exists a positive constant ¢ such that
g™ < ¢l f] on K

Proof of Theorem 1.1. Let X be a C"S manifold. If dim X = 0 then
X consists of finitely many points. Thus the result holds.

Assume that m := dim X > 1. Let {¢; : U; — R™}._; be a C"&
atlas of X. Then each ¢;(U;) is a noncompact C™S submanifold of R™.
Hence by Corollary 3.2, we have a C"G imbedding ¢, : ¢;(U;) — RrR™
such that the image is bounded in R™ and

¢; 0 ¢:(Us) — ¢ 0 ¢i(Us)

consists of one point, say 0. Set
m/ m/
. m m’ _ Z 2k Z 2k
UR —R aﬂ(wl""’xm’)_ S PR ;i Tm! |,

9:: Ui — R™ o g0,
for a sufficiently large integer k. Then g; is a C"& imbedding of U; into
R™'. Moreover the extension §; : X — R of g; is defined by gi =0 on
X -U;.

We now prove that g; is of class C”G. It is sufficient to see this
on each C"G coordinate neighborhood of X. Hence we may assume
that X is open in R™. We only have to prove that for any sequence
{a;}$2, in U; convergent to a point of X — U; and for any o € N™
with |a| < r, {D%g;(a;)}32; converges to 0. On the other hand, g; =
(Oo7ey 25 bir, -+ UL, $3F bim:), where @0 ¢; = (i1, -+, $im'). Each

¢i; is bounded, and every {¢;;(a;)}52, converges to 0, and
J J =1
| D% (¢ is)|
=| Y (al/(B9)DPgZF D7y
Bty=a
<C > |25V DP1 gy - DPY ¢y DY g
Brt-t By +y=a,Bi70
< C'|¢3 7,

)
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where C,C’ are constants, and 1 is the positive C%S function defined
by

Y(z) =maxql, > [DPgy(x) - DPij(z)DVis()]

Pt +Byty=a

Define
_ [ min{|¢;;(z)],1/¢(z)}  onU;
9@'(33) = 0 on X U
- f $ij on U;
%’{0 on X — U

Then 0;; and ¢;~j are C%G functions on X such that
X —U; C6;10) = 655 ' (0).

Hence by Proposition 3.3 we have |¢~,-jl | < df;; on some open G neigh-
borhood V of X — U, in X for some integer I”, where d is a constant.
On the other hand, by the definition of 6;;, ‘

|¢9wl _<_ lon Uz
Hence the above argument proves that .
|D(¢3f i) < "

on U;NV | where ¢ is a constant and we take k such that 2k > r+1"+1.
Hence each g; is of class C™&. It is easy to see that

!
Hg}-:X — R

i=1

is a C"6 imbedding. O
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4. Proof of Theorem 1.2

For the proof of Theorem 1.2, we prove the following slice theorem
in the equivariant o-minimal category. Equivariant C*° version of it is
well known (cf. [5])

THEOREM 4.1. Suppose that G is a compact affine C*& group, X
is a C°°S-G manifold, and that x € X. Then there exists a linear
C®G slice at x in X.

To prove Theorem 4.1, we need several definitions and results. Our
proof of Theorem 4.1 is a modification of that of Theorem 2.5 [6].

Let A C R™ bean G set. A C°G map f: A — R is called &
trivial if there exist £ € N and a C°G map g : A — R* such that
a — (f(a),g(a)) is a homeomorphism of A onto f(A) x g(A).

THEOREM 4.2 (Local triviality) [3]. Let A C R™ be an S set and let
f:A— R" beaC%8 map. Then there exists a partition {Cy,--- ,C;}
of f(A) into & sets such that each f|f~1(C;) is & trivial.

Let G be a compact Lie group and let €2 be a representation of G.
Then the algebra R[Q]¢ of G invariant polynomials on € is finitely
generated [18]. Let p1,--- ,p be G invariant polynomials on € which
generate R[Q]¢ and let

p: — Rl’p(x) = (pl(x)" o ,pl(m))'

Then p : @ — R' is a proper polynomial map. Notice that every
polynomial map is an & map in any M. Suppose that X is a G invariant
S subset of Q. Then p(2) and p(X) are & subsets of R.. Moreover p
induces the map j : Q/G — R! such that p = j o7, where 7 : @ —
2/G denotes the orbit map. Then j is a closed imbedding. Hence we
identify X/G (C Q/G) with an & subset j(X/G) (C j(2/G)) of R%.

PROPOSITION 4.3. Let G be a compact affine C°°G group and let
X be a G invariant G subset of a representation of G. Then the orbit
space X /G admits a structure of & set such that:

(a) The orbit map 7 : X — X /G is an & map and there exists a
decomposition of X/G into finitely many & sets T, - - - , T such
that each nt|n~1(T}) : w|ln~1( Tx) — Tk admits a C°G section.
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(b) For any map f from X/G to any G setY, f is an G map if and
only if so is f o 7.

Proof. By the construction of definable structure of X/G, 7 is an
S map. By Theorem 4.2, there exists a decomposition of X/G into
finitely many & sets {7k} such that each wjxY(T%) : 7~ Y (Tk) — Tk
admits a C%G section s;. Hence f|T), = fo(mosi) = (fon)osk. Thus
f is an & map if so is f o m, this proves Property (b). O

PROPOSITION 4.4. Let G be a compact affine C*°& group. Suppose
that X is an affine C*°S-G manifold with free action. Then the orbit
space X/G admits an affine C*°S manifold structure such that:

(a) The orbit map 7 : X — X/QG is a C*°G map.
(b) For any map f from X/G to any affine C®S& manifold Y, f is
a C*G map.
if and only if so is f o .

Proof. Since G is compact and by a fundamental fact of C*°G mani-
folds, X/G is a C° manifold, 7 is a C* map, for any map f : X/G —
Y, f is of class C* if and only if so is f o w. Notice that X/G is an &
set. Hence X/G is an affine C*°& manifold. By construction, 7 is an
G map. Hence 7 is a C°6 map. Applying Theorem 4.2 to w, f is an
G map if so is f on, hence f is of class C®& if and only if so is f o 7.
Therefore our proposition is proved. a

PROPOSITION 4.5. Let G be a compact affine C*& group. Suppose
that K is a compact C*°& subgroup of G and that S is an affine C*° G-
K manifold. Then the twisted product G x g S with the standard G
action G x (G xg §) — G xk S,(g,[d',s]) — [9¢',5] is a C*6-G
manifold.

Proof. The product K manifold G x S with the K action (k, (g, s)) =
(gk~!,ks) is an affine C°&-K manifold by Remark 2.7. Since the
action of K on G x S is free and by Proposition 4.4, G x g S is an affine
C°° S manifold. Clearly the standard action of G on G x g S is of class
C®. Let m: G xS — G xg S be the orbit map. Then 7 is a C*°&
map, in particular it is an & map. Clearly the action of G on G x S
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defined by G x (G x §) — G x S, (g, (¢, 5)) — (gg’, s) is of class C®S.
Since the graph of the standard action on G x x S is the image of that
of the action map of G on G x S by idg x 7 x 7, it is an & set, thus it
is of class C*°G. 0

We define C*°G slices and linear C®G slices in a similar way of
smooth slices and linear smooth slices (cf. [5]).

DEFINITION 4.6. Let G be a compact affine C*°& group. Suppose
that X is a C*°6-G manifold, and that K is a compact C*®& subgroup
of G.

(1) We say that a K invariant C*°& submanifold S of X is a C®*&-K
slice if GS is open in X, S is affine as a C*°&-K manifold, and

p:Gxg S — GS (C X),[g,z] — gz

is a C*°6-G diffeomorphism.

Remark that p is always an & map because its graph is the image
of that of G x § — G5, (g, s) — gs by 7 x idgg, where 7 denotes the
orbit map G x § — G xg S.

(2) A C*6-K slice S is called linear if there exist a representation £
of K and a C*6-K imbedding j :  — X such that j(Q) = S.

(3) We say that a C°G-K slice (resp. a linear C®&-K slice) S is a
C>G slice (resp. a linear C°G slice) at zin X if K =G, andz € S
(resp. K = G, and j(0) = x).

PROPOSITION 4.7. Let G be a compact affine C®°& group and let
K be a compact C*& subgroup of G. Suppose that 7 : G — G/K
denotes the orbit map. Then there exist an open K invariant & neigh-
borhood V of eK in G/K and a C®G-K section o : V — G such that
o(eK) = e and that V is C*&-K diffeomorphic to some representation
of K. Here the actions of K on G/K and G are the following:

K xG/K — G/K,(k,gK) — kgK,

K xG— G,(k,g) — kgk™L.
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Proof. At first we show that the left coset space G/K becomes a
C*®G-K manifold. By Proposition 4.4, G/K becomes an affine C*&
manifold such that the orbit map 7 : G — G/K is a C°°& map. Since
the action map of K on G/K is the image of that of K on G defined
by K x G — G, (k,g) — kg, the action map of K on G/K is of class
S. Thus G/K is a C*°S-K manifold.

Furthermore, 7 : G — G/K is a C°°G-K map under the above
K actions, and e € G and eK € G/K are fixed points of K. Thus
the tangent spaces T.(G) at e € G and T.x(G/K) at eK € G/K are
representations of K. Since K is compact, we may assume that they are
orthogonal representation spaces. Since 7 is submersive, the differential
(d)e : Te(G) — Tex(G/K) is a surjective linear K map.

The tangent space T.(K) of K at ¢ € K is a K invariant linear
subspace of T.(G). Let L denote the orthogonal complement to T.(K)
in T.(G). Then L is a K invariant linear subspace of T.(G) and T.(G) =
T.(K) ® L. Moreover q := dimL = dimG — dim K = dimG/K, and
(dm)e|L : L — T.(G/K) is a linear K isomorphism.

Using the exponential map, one can find a g-dimensional K invariant
C®° submanifold V* of G such that e € V* and T.(V*) = L.

Approximating V*, we now construct g-dimensional K invariant
C>®S submanifold V' > e of G such that To.(G) = T.(K) @ T.(V')
and (dm)e|Te(V') : Te(V') — Te(G/K) is a linear K isomorphism.
Recall that G can be regarded as a C*G-G submanifold of some
representation §) of G by Remark 2.7. Take a C°°K tubular neigh-
borhood (W,p) of V* in G. Let ¢ : W — G(Q,dimK),¢(z) =
the normal space of V* in G at p(z) and ¢ : W — Q,¢(z) = z—p(x).
Define

&: W — (Q,dimK) (C G(Q,dimK) x Q C M(Q) x ),
®(z) = (¢(z), P(x))-

Then V* = & 1(G(Q,dim K)), and ® is a C°°K map and transverse
to G(Q,dim K ). By Theorem 2.6, there exists a polynomial map
h: W — M(Q) x Q such that h approximates ® and h(e) = ®(e),
where W’ is an appropriate compact C°&-K manifold with W’ 3 e
and W’/ C W. By averaging h, we may assume that h is a polynomial
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K map. Using Proposition 2.9, one can find a C“G-K tubular neigh-
borhood (T, p) of ¥(2,dim K) in M(Q) x Q. If this approximation is
sufficiently close, the image of h lies in T. Hence composing h with
7, we have a C°G-G map h : W' — (9, dim K) with h(e) = d(e)
as an approximation of ®/W’. Thus h is transverse to G(f2,dim K).
Hence V' := (h)"}(G(Q,dim K))NInt W’ is a C*®°&-K submanifold of
G contained in W. If this approximation is sufficiently close, then V'
has the required properties.

Hence |V’ : V! — G/K is a C*°6-K map and the differential
(d(7|V'))e : Te(V') — Te(G/K) is a linear K isomorphism. By the
inverse function theorem, there exists an open & neighborhood U of
e in V' such that #n|U : U — #(U) is a C*°& diffeomorphism onto
an open S neighborhood V := 7(U) of eK in G/K. Since G is affine
and K is compact, shrinking U, if necessary, we may assume that U is
C*®B-K diffeomorphic to some representation of K. Therefore

o:=(nU):V-—-UcCG
is a C°G-K section over V of m and o(eK) = e. O

We prepare the following two lemmas obtained by a way similar to
the proof of 1.2 [6] and 5.2 [5], respectively.

LEMMA 4.8. Let G be an affine C*°G group and let H be a compact
C>®G subgroup of G. Suppose that U is an open neighborhood of H
in G. Then the identity element e € G has an open & neighborhood
V Cc U such that HVH =V.

LEMMA 4.9. Let G be a compact affine C*°6 group and let K be a
compact C®& subgroup of G. Suppose that S is a K invariant C*&
submanifold of a C*°8&-G manifold of X such that S is affine as a
C*>®G-K manifold. Then the following are equivalent.

(1) Sis a C*6-K slice in X.
(2) GS is open in X and there exists a C*°G map~y: GS — G/K
such that y~!(eK) = S.
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Proof of Theorem 4.1. By the definition of C*& manifolds, there
exists a C*™°& diffeomorphism f from an open & neighborhood V of z
in X to an open & neighborhood B of the origin of R™, where m =
dim X. Let n be the dimension of a C*°® submanifold f(G(x) N V)
of R™. Then the set N’ of points in R™ whose inner product with
every point in the tangent space Ty f(G(z) N V)) is zero is a subspace
of dimension m —n. Hence N := BN N’ is a C*°S submanifold of R™.
Thus $* := f~Y(N) is a C*G submanifold of V. Moreover we have
X = T.G(z) @ To(f~'(N)) because ToR™ = Ty f(G(z) N V) & TyN
and f is a C*°@ diffeomorphism. On the other hand, X admits a G,
invariant C° metric because G, is compact. Hence using this metric,
§* is G, invariant by the proof of 2.3 [6].

By Proposition 4.7, one can find an open G, invariant & neighbor-
hood W of eG, in G/G, and a C*°G-G,, section v : W — G of the
orbit map 7 : G — G/G, such that v(eG,) = e. Define

F:Wx8 — X,F(w,s) =v(w)s.

Since F' = (¢|G x $*) o (y x idg+), F is a C*°G map, where ¢ denotes
the group action map G x X — X. The map o, : G/G, — G(z)
defined by a(gG;) = gz is a C* diffeomorphism, and its graph isan &
set because it is the image of the graph of the map G — G(z),g — gz
by m X idg(z). Therefore o, is a C*& diffeomorphism.

We identify T(cq, o) (W x S*) with Toq, (W)@ T, S*. Then dFeq, )
(W1,92) = (daz)eq, (v1) + (did)(32), (y1,92) € Tog, W & T,S*. Since
;X = T,G(z) ® T,S*, and since (dag)eq, and (did), are isomor-
phisms, dF(.q, ) is an isomorphism. By the inverse function theorem,
there exist open & neighborhoods U’ ¢ W of eG, and W’  S* of
such that F'|(U’ x W') is a C*°@ diffeomorphism onto an open & neigh-
borhood of z in X. Since G, is compact, = has an open (7, invariant
neighborhood S’ ¢ W’ (c §*).

Let Up = #~!(U’). Then Uy is an open & neighborhood of G in
G. Since G, is compact and by Lemma 4.8, there exists an open &
neighborhood W' C Uy of e such that G,W'G, = W’. For any subsets
A, B C X, let G(A|B) denote {g € G|gBNA # 0}. Since W' is an open
6 neighborhood of G, and by 1.1.6 [14], = has an open neighborhood
Vo with G(Wo|Vo) € W'. Shrinking Vy, if necessary, we may assume
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that V; is an & set. Thus G(G,Vo|G:Vo) = G(G(Wo|Vo))Gsz C Uo.
Hence S := S’ NGV} is an open G invariant C*°& submanifold of S*
containing . Moreover since G, is compact, shrinking S, if necessary,
we can find a C°6-G, imbedding j from some representation Q' of G
into X such that j(') = S and j(0) = z. Since F|U'xW' : U'xW' —
F(U' x W') is a homeomorphism, UpS = F(U' x S) is open in X. Thus
GS = GU,S is open in X. Moreover the map [ : GS — G /G, defined
by gs — gG is well-defined and S = ["!(eG;). Clearly [ is a G map.
By the proof of 2.5 [6], ! is of class C™°.

Therefore by Lemma 4.9, S is the required linear C*& slice at z.[J

To prove Theorem 1.2, we need the following two lemmas.

LEMMA 4.10. Let G be a compact affine C*°& group. Suppose that
X is a C°G-G manifold and z € X. Then there exists a linear C*G
slice S at z in X such that G x¢g,_ S is affine.

Proof. By Theorem 4.1, there exists a linear C°G slice S’ at z in
X. Let = be a representation of G, and let G xg, = — GS’ C X be
a C°6-G diffeomorphism. Since G is compact and by a fundamental
fact, G xg, D5 can be C*°G imbeddable into some representation {2 of
G, where Dy denotes {z € Z[||z|| < 2}. Let ¢ denote a C*°G imbedding
G x ¢, D2 — Q. On the other hand, we may assume that G x ¢, Int D,
is a €S submanifold of some R™ by Proposition 4.4. By Theorem 2.6,
there exists a polynomial map F : R® — (2 such that F|(G x¢g, D)
is an approximation of i, where D denotes the open unit ball of Z=.
Since G is compact, averaging F', we may assume that F|(G x¢g, D) is
a polynomial G map. If this approximation is sufficiently close, then
F|(G x ¢, D) is a C*®°@ imbedding by 1.4 [4]. Thus G x¢g, D is C*6-G
diffeomorphic to a C®&-G submanifold F(G x¢, D) of €. Since D is
C*°6-G diffeomorphic to =, we complete the proof. 0

LEMMA 4.11. Let M be exponential and let G be a compact affine
C* group. Suppose that Dy and D; are open balls in a representation
Q of G of radius a and b with same center the origin and a < b. If
A,B € R, A # B, then there exists a G invariant C*°& function f on
Q such that f = A on D; and f = B on Q — Ds.
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Proof. We may assume that A = 1 and B = 0. We now construct the
desired function when 2 = R. We may suppose that D; = (—a,a) and
Dy = (—b,b) are open intervals. Recall the C°°G function F defined
by

Flz) = 0 ifz<0
T e Vs ifz>0
(See Example 2.2 (1)). The function % : R — R defined by
P(z) =F(b~2)F(b+z)/(F(b-z)F(b+ ) + F(z? — a?))

1s the desired function.

Hence for a general representation Q of G, f : § — R, f(z) = ¥(|z|)
is the required function, where |z| denotes the standard norm of z in
Q. (]

Proof of Theorem 1.2. Let X be a compact C®°&-G manifold and let
z € X. By Theorem 4.1, there exists a linear slice G xXa, 2z at zin X.
Furthermore we may assume that G xg, ; is C*°6-G diffeomorphic
to a C®6-G submanifold of some representation =, of G by Lemma
4.10. Let ¢5 : G xg, s (C X) — E, be a C°G-G imbedding.

Since M is exponential and by Lemma 4.11, there exists a G invariant
C>°6 function f; : Q, — R such that f,|Dy = 1 and f,|(Q—Dj) = 0,
where D, denotes the open ball of radius r with center the origin. Us-
ing fr, we can extend ¢,|G xg, D; : G xa, D1 — E; to a C®6-
G map ¥, : X — Z,, and we can find a G invariant C°& map
hy : X — R such that h;|(G xg, D1) = 1 and h,|(X —G x¢g, D3) = 0.
Since X is compact, one can find z1,--- ,2; € X such that X =
ui_ (G XG,, D1). Therefore ¢ : X — B, x -+ x By, x R, 9h(z) =
(Y2, (%), -+ s %2, (%), By (T), - -+, B, () is the required C°G-G imbed-
ding, N

Here are two natural open questions.

PROBLEM A. Let M be polynomially bounded. Is a C®& map on
an open & set of class C“G ? Is a C*°G manifold a C“S manifold?

Notice that if M is exponential, then F : R — R in Example 2.2
(1) is a C*°& function but not analytic. Thus the graph of F is a C°&
manifold but not a C“& manifold.
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PROBLEM B. Does there exist a (compact) nonaffine C“& manifold
for any M ?

Notice that if M = R (resp. Rexp), then Problem B is negative [15]
(resp. [8]).

(1)
(2]
3]

(4]
(5]

[14]
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