References
- Ergebnisse der Mathematik, und ihrer Grenzebiete Geometie algebrique reelle J. Bochnak;M. Coste;M. F. Roy
- Lecture notes series 248, London Math. Soc. Tame topology and O-minimal structure van den Dries
- Duke Math. J. v.84 Geometric categories and o-minimal structure van den Dries;C. Miller
- Differential topology M. W. Hirsch
- Ann. of Math. Stud. v.138 Every proper smooth actions of a Lie group is equivalent to a real analytic ation: a contribution to Hilbert's fifth problem S. Illman
- Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes v.83 Proper real analytic actions of Lie groups on manifold M. Kankaanrinta
- Chinese J. Math. v.22 Algebraic G vector bundles and Nash G vector bundles T. Kawakami
- Sci. Bull. Josai Univ. Special Issue v.2 A note on exponentially Nash G manifolds and vector bundles T. Kawakami
-
J. Math. Soc. Japan
v.48
Nash G manifold structures of compact or compactifiable
$C^∞G$ manifolds T. Kawakami - Pacific J. Math. v.154 One-dimensional Nash groups J. J. Madden;C. H. Stanton
- Ideals of differential functions B. Malgrange
- Proc. Amer. Math. Soc. v.122 Exponentiation is hard to avoid C. Miller
- J. Math. Mech. v.6 Imbedding of compact differential transformation groups in orthogonal representations R. S. Palais
- Ann. of Math. v.73 On the existence of slices for actions of non-compact Lie groups R. S. Palais
- Proc. Amer. Math. Soc. v.96 Abstract Nash manifolds M. Shiota
- Lecture Note in Mathematics v.1269 Nash manifolds M. Shiota
- Algebraic geometry and Nash functions A. Tognoli
- The classical groups(2nd, ed.) H. Weyl