IMBEDDINGS OF MANIFOLDS DEFINED ON AN 0-MINIMAL STRUCTURE ON (R,+,.,<)

  • Kawakami, Tomohiro (Department of mathematics, Faculty of Education, Wakayama University)
  • Published : 1999.02.01

Abstract

Let M be an 0-minimal structure on the standard structure :=( , +, ,<) of the field of real numbers. We study Cr -G manifolds (0$\leq$r$\leq$w) which are generalizations of Nash manifolds and Nash G manifolds. We prove that if M is polynomially bounded, then every Cr -G (0$\leq$r<$\infty$) manifold is Cr -G imbeddable into some n, and that if M is exponential and G is a compact affine Cw -G group, then each compact $C\infty$ -G imbeddable into some representation of G.

Keywords

References

  1. Ergebnisse der Mathematik, und ihrer Grenzebiete Geometie algebrique reelle J. Bochnak;M. Coste;M. F. Roy
  2. Lecture notes series 248, London Math. Soc. Tame topology and O-minimal structure van den Dries
  3. Duke Math. J. v.84 Geometric categories and o-minimal structure van den Dries;C. Miller
  4. Differential topology M. W. Hirsch
  5. Ann. of Math. Stud. v.138 Every proper smooth actions of a Lie group is equivalent to a real analytic ation: a contribution to Hilbert's fifth problem S. Illman
  6. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes v.83 Proper real analytic actions of Lie groups on manifold M. Kankaanrinta
  7. Chinese J. Math. v.22 Algebraic G vector bundles and Nash G vector bundles T. Kawakami
  8. Sci. Bull. Josai Univ. Special Issue v.2 A note on exponentially Nash G manifolds and vector bundles T. Kawakami
  9. J. Math. Soc. Japan v.48 Nash G manifold structures of compact or compactifiable $C^∞G$ manifolds T. Kawakami
  10. Pacific J. Math. v.154 One-dimensional Nash groups J. J. Madden;C. H. Stanton
  11. Ideals of differential functions B. Malgrange
  12. Proc. Amer. Math. Soc. v.122 Exponentiation is hard to avoid C. Miller
  13. J. Math. Mech. v.6 Imbedding of compact differential transformation groups in orthogonal representations R. S. Palais
  14. Ann. of Math. v.73 On the existence of slices for actions of non-compact Lie groups R. S. Palais
  15. Proc. Amer. Math. Soc. v.96 Abstract Nash manifolds M. Shiota
  16. Lecture Note in Mathematics v.1269 Nash manifolds M. Shiota
  17. Algebraic geometry and Nash functions A. Tognoli
  18. The classical groups(2nd, ed.) H. Weyl