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POLYTOPES OF MINIMAL NULL DESIGNS

SooJIN CHO

ABSTRACT. Null designs form a vector space and there are only
finite number of minimal null designs(up to scalar multiple), hence
it is natural to look at the convex polytopes of minimal null designs.
For example, when ¢ = 0, k¥ = 1, the convex polytope of minimal
null designs is the polytope of roots of type A,. In this article,
we look at the convex polytopes of minimal null designs and find
many general properties on the vertices, edges, dimension, and some
structural properties that might help to understand the structure
of polytopes for big n,t through the structure of smaller n,t.

1. Introduction

For a given positive integer n, we let B, be the Boolean algebra,
i.e. the lattice of all subsets of a finite set [n] = {1, 2, ..., n}. For
W = Y. sep, @55, where ag € R, supp(w) is defined to be the subset
{S| as # 0} of By. Foreach i =0, 1, ..., n, let us define the fibers X;
of B, as X; = {S € B, ||5| =i}. Then, for given integers 0 < t < k < n,
the vector space of null (t,k,n)-designs N(t,k,n) is defined as follows:

Nt k,n) ={w = Z asS | ag € R, Zas =0 for any T € X;}.
SeXy, §oT

We call a nonzero null (¢, k, n)-design minimal if the size of its support
is the minimal possible number.

Null designs have been considered in many different aspects [4, 6, 7).
Null designs are useful to understand designs or to construct new designs
from a known one. They also deserve research as pure combinatorial
object. Especially, people have been interested in the minimum of the
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support size of nonzero null designs and the characterization of minimal
null designs. Minimal null designs were used to construct explicit bases
of the space of null designs.

In [6], Frank! and Pach proved that the size of the support of nonzero
null (¢, k, n)-design is at least 2¢*!. Let us identify a subset {aj, as, ...,
a;} of [n] with the monomial x4, g, - - - 4, of { distinct indeterminates.
Then

wo = (1 — 22) (T3 — T4) - - (Tot41 — T2442) %2443+ * Thpt+1

is a null (¢, k,n)-design whose support size is 2¢¥1, In [5], Liebler and
Zimmerman proved that for k = ¢t + 1, wg and its images under the
natural permutation group action are the only null ¢-designs which have
the support size 2¢*! up to scalar multiple. For general t and k, it
was proved that the null ¢-designs of support size 2t*! are of the form
(r1—22)(3—24) - - - (Tog41 —T242)T2443  * - Ths41 UP to scalar multiple,
ifn=Fk+t+1[4]

Since null (¢, k, n)-designs are linear combinations of k-subsets, with a
chosen ordering on the set of k-subsets, they can be thought as vectors

in RG). R(Z), if we only consider the minimal null designs with
coefficients 0,1, —1, then the vectors of minimal null designs are all on
a sphere. Hence, it is natural to look at the convex polytopes of (vector
representation of) minimal null designs. For example, when ¢t = 0,
k = 1, the convex polytope of minimal null designs is the polytope of
roots of type A,,. Moreover, convex polytopes of minimal null designs
are examples of Young orbit polytopes that are served as domains for
many optimization problems.

In this article, we consider the convex hull of vectors of minimal null
(t,t+1,n)-designs, and call it P;,. Note that we only consider the case
k=t+1. So, B, is a convex polytope in R(Hrfl).

The special case t = 0 has been considered in [5] as a convex polytope
of all roots of type Ay, since when ¢t = 0 minimal null designs are of the
form z; — z; and these are exactly the roots of type A, ([8]). If t > 0
then the set of minimal null designs does not form a root system of any
type, we however believe that P, , can be constructed from P ,’s with
some basic operations. Hence, it is worthwhile to investigate the general
properties of P 5.

Also, note that P, is called as the Young orbit polytope correspond-
ing to the partition A\ = (n — ¢ — 1,¢t + 1), which was introduced as a
framework to many combinatorial optimization problems [10].
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In Section 2, we state basics on convex polytopes, summarize known
results on minimal null designs and polytopes Fp,. In Section 3, we
investigate general properties of P, about vertices, edges, dimensions,
and some more structural properties. We believe that the results we
prove will become a base to understand the full structure of P;,. In the
final section we conclude with some remarks.

2. Preliminaries

In this section we give very basic definitions on convex polytopes,
give the formal definition of convex polytopes P ., and state the known
results on the minimal null designs and the structure of Fy,,.

We refer to [1, 12] for detailed information on convex polytopes, while
we give some basic definitions related to convex polytopes. For two
vectors u, v € R%, we let (u,v) denote the usual inner product in R%. A
(convez) polytope is the convex hull Conv(K) = {Z£=1 Al Y N =
1, A > 0} of a finite set K = {uy,...,w;} in R% for some d. The
dimension of a polytope Conv(K) is the dimension of its affine hull
{Zézl Aiw; ¢ Y. A; =1}, i.e. the size of the largest affinely independent
subset of K subtracted by 1. A face of a polytope P € R? is any set of
the form F = PN{x € R? : (c,x) = ¢y}, when (c,x) < ¢; for all x € P.
The dimension of a face is the dimension of its affine hull. P itself is
a face with (0,x) < 0, and @ is a face given by (0,x) < —1. We call
these faces trivial. A 0-dimensional face of a polytope is called a vertez
and a 1-dimensional face is called an edge. A face F' of a polytope P
is called a facet if the dimension of F' is one less than the dimension
of P. Observe that faces are characterized as the subsets of P, whose
elements maximize a given linear functional. In the definition, we can
replace ¢, cg by —c¢ and —cg respectively, and change the inequality at
the same time. Hence, the faces of a polytope is also characterized as
subsets minimizing a linear functional.

We state the theorems in [6, 9] on the minimal null designs for future
references.

PROPOSITION 1. The minimum of the support size of nonzero null
(t,t + 1,n)-designs is 211
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PROPOSITION 2. Ifw € N(t,t+1,n) and |supp(w)| = 2t*1, then w is
a multiple of (;; — 4, )(Ti; — Tiy) = (Tigyy) — Tigyy,) for a (264 2)-subset
{1, . ydat42} of [n].

For t < n, fix a linear order on the set of (¢ + 1)-subsets of [n], then
each minimal null (¢,¢ 4 1,n)-design can be represented as a vector in

RG) with exactly 281 nonzero entries. We normalize each minimal
null design vector by multiplying a positive scalar so that each nonzero
entry of the vector is either +1 or —1. From now on, in this paper, by
minimal null (t,t+1, n)-vectors (or just minimal null vectors if there is no
confusion) we mean the normalized (vector representation of) minimal
null designs i.e. the vector of minimal null (¢,¢ + 1,n)-designs whose
nonzero entries are £1. We now can give a formal definition of the
polytope P; n:

P, n = Conv({v|v is a minimal null (¢,¢ + 1, n)-vector}) C RU3).

EXAMPLE 1. We consider the case n = 4 and t = 1. By Proposi-
tion 2, minimal null designs are multiples of (z;, — z;, )(x;; — xi,) Where
{i1,142,13,14} = {1,2,3,4}. Therefore, minimal null designs are multiples
of one of the followings:

w1 = (z1—z2)(zs —xz4) = {1,3} + {2,4} — {1,4} — {2, 3},
wy = (z1—z3)(z2 —z4) = {1,2} + {3,4} — {1,4} — {2, 3},
wy = (z1—z4)(z2 —xz3) = {1,2} + {3,4} — {1,3} — {2,4}.

We give a linear order on the set of 2-subsets of [4] in the following
way:

{1,2} <{1,3} <{1,4} <{2,3} <{2,4} < {3,4}.

Then, the vector representation of wy in R is vi = (0,1, -1, —1,1,0),
the vector representation of wg is vo = (1,0,—1,—1,0, 1), and the vector
representation of w3 is vg = (1,—1,0,0,—1,1). Note that the number of
nonzero entries of each vector are 22 = 4.

Let w be a given minimal null design. Then for some nonzero constant
c € Rand i € {1,2,3}, we have w = cw;, and its normalized vector is
v; if ¢ > 0, and —v; if ¢ < 0. Hence we have 6 minimal null vectors
Vi,V2,V3,—Vy,—V2, —V3, and

P1’4 = COIIV({Vl,Vz,V3, —Vi1, —Vag, —V3}) C ]R6.

The followings are theorems on Py , proved in [5].
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ProprosITION 3. The dimension of Py , isn — 1.

Let ¢; be the ith elementary vector in R™. The following proposition
characterizes all the faces of P , in a very natural way.

PROPOSITION 4. Every m-dimensional (m =0,...,n—2) faceof By p,
is given by the convex hull of the vectors in {e;—¢; : i € I,j € J} where
I, J are disjoint non-empty subsets of [n] such that |I| +|J| = m + 2.

The following is an immediate corollary of Proposition 4.

COROLLARY 5. There is a one to one correspondence between the set
of non-trivial faces of Py n and the set of ordered partitions of subsets
of [n] with two blocks, where the dimension of the face corresponding to
(I,J) is [I| + |J| — 2.

Propositions above show the explicit characterization of all faces of
Py n. When t > 0, we however do not have a characterization of the
faces of P; . In the next section we investigate the properties of F; ,
for general ¢, and try to find a way of characterizations of the faces of
P, through the known results on Fp .

3. Polytopes P,

In this section, we investigate some general properties of P .

LEMMA 6. The number of minimal null (t,t + 1,n)-vectors is

n!
2t (t 4+ 1) (n—2t—2)1

Proor. This is immediate from Proposition 2 that the minimal null

(t,t + 1,n)-designs are of the form (z;; — Zi,) =+ (Tingy1 — Tiney2)- (
Let {vi,...,vn} be the set of minimal null (¢, £+ 1, n)-vectors, where
N = n! Remember that for vectors u, v € R(til),

2t (t+ 1)1 (n—2t—-2)1"
(u,v) denote the usual inner product in R4, Note that supp(v;) =
(vi,v;) =21 fori = 1,..., N, since v; has exactly 2¢*! nonzero entries
and the nonzero entries are £1.
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LEMMA 7. (v;,v;) <20 if i #j.

PROOF. Suppose that (v;, v;) > 2, then (v;—v;j, vi—v;) = (vi, vi)+
(vj,v;) — 2(vi,vy) < 2841 4 ot+l 9.9t = 211 Since N(t,t+ 1,n) is
a vector space, v; — v; # 0 is (vector representation of) another null
design with support size less than 2/+!, and we have a contradiction to
Proposition 1. Hence, (v;,v;) < 2¢. O

LEMMA 8. v; — v; is another minimal null vector if and only if (v;,
Vj) = 2t.

PROOF. First of all, note that if supp(v;) Nsupp(v;) # @, then the
product of coefficients of S € supp(v;) N supp(v;) in v; and v; is inde-
pendent of the choice of S because of Proposition 2 and it is either +1
or ~1. Hence by Lemma 7, if i # j then |supp(v;) Nsupp(v;)| < 2t

If v; — v; is another minimal null vector then

(Vi—vjvi—v;)=2- ottl _ 9. (Vi, Vj),

which should be 21, Therefore, we have (v;,v;) = 2¢.
For the converse, let us assume that (v;,v;) = 2!. Then from the
above calculation, (v; —v;, v; —v;) = 2t+1. Since
|supp(vs) — (supp(vs) Nsupp(v;))| > 241 — 28 = 2
and
lsupp(v;) — (supp(vi) Nsupp(v;))| > 2,
v; —v; has at least 2- 2t many +1’s. Therefore we conclude that v; — v;

has exactly 2¢t! many nonzero entries which are +1, and it is a minimal
null vector. O

The following theorem characterizes the vertices(0-dimensional faces)
of P, t,n

THEOREM 9. In P, ,, each v; is a vertex. In other words, the set of
vertices of P, ,, is exactly the set of minimal null vectors.

PRrOOF. For each ¢ = 1,..., N, let us define a linear functional f :
R R as f(y) = (vi,y). Then, f(v;) = 2! while f(v;) < 2t+1
for j # i by Lemma 7. Hence {v;} is the subset of P;, maximizing f
when f is restricted to P 5. O

The following theorem gives information on the edges(1-dimensional
faces) of P p,.



Polytopes of minimal null designs 149

THEOREM 10. If v; — v;, @ # j, is another minimal null vector v,
then the line segment between v; and v; is an edge of F; .

PROOF. Let us define a linear functional f : R(tzl) —Ras f(y) =
((vi +v;4),y).- Then,
flavi +bvj) = a(vi, vi) + b(vj,v;) + (a + b)(vi, v;)
— (CL + b)2t+1 + (a + b)2t — 2t+1 + 2t7
for a,b >0, a + b =1, by Lemma 8. However, if k # 4,7, then f(vg) =
(v, Vi) + (Vg, v;) <28+ 2°. Hence the line segment between v; and v;
is the subset of P; ,, maximizing f on P p. O

THEOREM 11. The dimension of P, p, is (t_fl) - (.

PROOF. The algebraic dimension of the vector space of null designs

is (til) - (7;) and there is a well known basis consisting of minimal

null designs [4]. Hence, P;, C R(til)_(?) and we only need to prove
that there exists (,7,) — (}) + 1 subset of {vy,..., vy}, which is affinely

t+1
independent. We let M = (t_’l_‘l) - (th) and let vi,va,..., vy be a linear
basis of the vector space of null designs, and let vpr41 = —vi.
Consider the sum "M \;v; = 0 where M\ = 0. Rewriting
this, we have (A\y — Ap4+1)v1 + ng Aiv; = 0. Since {v1,...,vp} is a

linearly independent set, \; = Apr41 and \; =0 for i =2, ..., M. Now
the condition Zf\i‘fl X\; = 0 forces A\; = Apr41 = 0. Hence {vy, vo, ...,
v, Vim+1) is an affinely independent set. O

The following theorem states that P 2142 is exactly the same poly-
tope as P;_1,2t41. For example, if we let ¢ = 1, then P, 4 is an isomor-
phic polytope to Pp 3 about which we already know the complete face
structure by Proposition 4.

THEOREM 12. P, 9149 is affinely isomorphic to P—1,2t41 whent > 1.
2t+2 2t+1
In other words, there is an affine map ® : R( 1) o RCYY) that is a

bijection between the points of two polytopes P ot12 and Pi—1,2t+1.

We might want to check some necessary conditions for two polytopes
to be isomorphic. First of all, the number of vertices of P; 2142 is equal
to the number of vertices of Pi_q 2¢41:

(2t + 2)! (2t + 1)!

2(t+ 1) (2 +2—2t—2)1  2t-1¢
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Moreover,
dim(F;, 2042) = (2&12) - (*77)
_ (2t:r1) _ (2tt_+11) = dim(P_1, 2¢41)-

For the proof of Theorem 12, we need to introduce some definitions
and some known results on null designs. We refer to [11, 3| for more
detailed information.

Let (A1,...,A;) be a partition of n, then a standard tableau of shape
A is a A-tableau whose columns and rows form increasing sequences.

For null (¢,t + 1, n)-designs, we only need tableaux of shape (n —¢ —
1,t+1). Let T be a tableau of shape (n —t — 1,t + 1) given as follows:

i1 93 ccc lo4l 1243 v ln

ig B4 - 12t42
Then, the corresponding null (¢,¢ + 1,n)-design is defined as

e(T) = (mil - .’13,'2) Tt ($i2t+1 - xi2t+2)‘

REMARK 1. Note that exchanging two columns in the first £ 4 1
columns of T does not change the value of e, and exchanging the two
numbers in the same column in the first ¢t + 1 columns of T change the
value of e by the sign.

The following is a well known result on the representation theory of
the symmetric group [11].

LEMMA 13. Theset {e(T) | T is a standard tableau of shape (n—t—
1,t + 1)} is a linear basis of the space N(t,t + 1,n) of null (t,t + 1,n)-
designs.

Let us call the basis given in the above lemma GLL basis, where GLL
stands for R. L. Graham, S. -Y. R. Li and W. -C. W. Li. The following
relation gives an algorithm to write a non basis element of N(t,t+ 1,n)
as a linear combination of GLL basis elements.

Garnir relation: Assume that w = (z;, — z;,) -+ (T2t+1 — T2+2)
is not a GLL basis element. Then w = e(T") with some non standard
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tableau
T 11 G241 92543 0 @241 12t43 0 ln
i - 12542 12544 0 1242
We, however, always can assume that 7' has increasing columns and
the increasing second row by Remark 1. Hence we assume that 7 has
increasing columns and the increasing second row. Then, there must be

J such that dg;11 > i2;43. Let

o0 12j+1 92542 o0 G241 243 o0 U
Ty 12543 12544 *° G242
and . . . . . .
T, = 1 v 2543 2541 0 1241 243 0 In
27 g e 19542 2544 '+ 12t42
Then, e(T) — e(Th) — e(T3) = 0. O

LeEMMA 14. (Garnir relation [11]) The way to write down non GLL
basis elements of N(t,t + 1,n) as linear sums of GLL basis elements is
given by the successive use of Garnir relation.

We are now ready to finish the proof of Theorem 12.

ProOF OF THEOREM 12. We first define a bijection ¢ between
the set of vertices in P 9142 and the set of vertices in Py 9141. Let
(@i, — Tiy) -+ (Tigyy — Tine,o) be a vertex in P; 9442, then note that {is,

.., Goep2} = [2t + 2|, since n = 2t + 2. We also may assume that
A+2€ {i2t+1,i2t+2}. Let

¢((miy — T4y) -+ (xi2t+1 - xi2t+2))

(1) _— (xil - xiZ) e (wizt—l - xizt) if i2t+2 = 2t + 2
—(@i, = Tiy) - (Tige—y — Tiy) if doi1 =26+ 2.

Then it is obvious that ¢ has its inverse

O (Biy = Tiy) +++ (Tigey —Tine)) = (Tiy =Tip) ++ (Bige_y =iz, ) (Tige yr —T2012)
where {igt41} = [2t + 1] — {é1,...,i2:}. Hence ¢ is a bijection between

the sets of vertices. Now, it would be enough to show that ¢ is actually
242 2t+1
a restriction of a linear map P : R(t+1) - rETY

N(t,t+ 1,2t + 2) and ¢ is nonsingular.
It is easy to see that ¢ sends the GLL basis elements of N(¢,t+1, 2t+
2) to the GLL basis elements of N(t— 1,¢,2¢t +1). Hence, we can define

on the subspace
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® on the subspace N(t,t + 1,2t + 2) of null designs as a linear map
sending GLL basis elements to GLL basis elements of N(t —1,¢,2t + 1)
through ¢. We also can extend the GLL basis of N(¢,t + 1,2t + 2) to

the basis of R(ztt:f), and extend ® to the whole space. What we have
left to show now is ¢ is the restriction of ®, that is, for non basis null
designs, the image by ¢ is the one given by ®. By Lemma 14, it will
be sufficient to show that the Garnir relation is preserved as we apply
¢. Let e(T) — e(T1) — e(T3) = 0 be a Garnir relation in the subspace of
null (¢,¢ + 1,2t + 2)-designs. Then 2¢ + 2 is always on the last column
of T, T1,T5, hence by applying ¢ we only drop the last column. That is
#(e(T) — e(Th) — e(T2)) = e(T") — e(T]) — e(T}), where T” is obtained
from T by dropping 2t + 2. It is obvious that e(T") — e(T7) — e(T}) is a
Garnir relation on the subspace spanned by minimal null (¢ —1,¢, 2t+1)-
designs. O

Theorem 12 gives a way to understand P, ,, through the structure of
polytopes of smaller ¢,n’s for some selective values ¢,n. The following
two observations lead us to try to construct P;, using polytopes with
smaller ¢, n’s.

PROPOSITION 15.

dim(Py1,n41) = dim(Fy,,) + dim(Pega,n)-
PROOF. This is immediate from Theorem 11. a
We let v(t,n) denote the number of vertices of the polytope P, ,, i. e.

the number of null (¢,¢t + 1,n)-designs. Then, we have the following
relation on v(t,n)’s.

PROPOSITION 16.
vt+1,n+1)=(n—2t—2)(t,n) +v(t+1,n).

Proor. This is immediate from Lemma 6 and Theorem 9. ]

4. Remarks

1. Our final goal of research on the polytopes P, , is to characterize
all faces of each polytope in a very natural way as we did for Py,
in [5]. Theorem 12, Proposition 15, and Proposition 16 give us
ways to study F;, through the study of smaller t,n. We believe
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that there must be a natural operation between. two polytopes of
minimal null designs to construct another in accordance with our
theorems.

2. We believe that P;, can be used as a domain for optimization
problems also. Although we do not deal with this matter in this
paper, it would be interesting to consider P, from this point of
view ([2, 10]).
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