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AN ERDŐS-KO-RADO THEOREM FOR MINIMAL COVERS

Cheng Yeaw Ku and Kok Bin Wong

Abstract. Let [n] = {1, 2, . . . , n}. A set A = {A1, A2, . . . , Al} is a
minimal cover of [n] if

⋃

1≤i≤l Ai = [n] and
⋃

1≤i≤l,
i6=j0

Ai 6= [n] for all j0 ∈ [l].

Let C(n) denote the collection of all minimal covers of [n], and write
Cn = |C(n)|. Let A ∈ C(n). An element u ∈ [n] is critical in A if it
appears exactly once in A. Two minimal covers A, B ∈ C(n) are said to
be restricted t-intersecting if they share at least t sets each containing an
element which is critical in both A and B.

A family A ⊆ C(n) is said to be restricted t-intersecting if every pair

of distinct elements in A are restricted t-intersecting. In this paper, we
prove that there exists a constant n0 = n0(t) depending on t, such that
for all n ≥ n0, if A ⊆ C(n) is restricted t-intersecting, then |A| ≤ Cn−t.
Moreover, the bound is attained if and only if A is isomorphic to the
family D0(t) consisting of all minimal covers which contain the single-
ton parts {1}, . . ., {t}. A similar result also holds for restricted r-cross
intersecting families of minimal covers.

1. Introduction

Let [n] = {1, . . . , n}, and let
(

[n]
k

)

denote the family of all k-subsets of [n]. A
family A of subsets of [n] is t-intersecting if |A ∩B| ≥ t for all A,B ∈ A. One
of the most beautiful results in extremal combinatorics is the Erdős-Ko-Rado
theorem.

Theorem 1.1 (Erdős, Ko, and Rado [11], Frankl [13], Wilson [38]). Suppose

A ⊆
(

[n]
k

)

is t-intersecting and n > 2k − t. Then for n ≥ (k − t+ 1)(t+ 1), we
have

|A| ≤
(

n− t

k − t

)

.

Moreover, if n > (k− t+1)(t+1), then equality holds if and only if A = {A ∈
(

[n]
k

)

: T ⊆ A} for some t-set T .
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Let Ai ⊆
(

[n]
ki

)

for i = 1, 2, . . . , r. We say that the families A1,A2, . . . ,Ar

are r-cross t-intersecting if |A1∩A2∩· · ·∩Ar| ≥ t holds for all Ai ∈ Ai. When
t = 1, we will just say r-cross intersecting instead of r-cross 1-intersecting.
When r = 2 and t = 1, we will just say cross-intersecting instead of 2-cross
intersecting.

Theorem 1.2 (Bey [3], Matsumoto and Tokushige [32], Pyber [34]). Let A1 ⊆
(

[n]
k1

)

and A2 ⊆
(

[n]
k2

)

be cross-intersecting. If k1, k2 ≤ n/2, then

|A1||A2| ≤
(

n− 1

k1 − 1

)(

n− 1

k2 − 1

)

.

Equality holds for k1+k2 < n if and only if A1 and A2 consist of all k1-element

resp. k2-element sets containing a fixed element.

In the celebrated paper [1], Ahlswede and Khachatrian extended the Erdős-
Ko-Rado theorem by determining the structure of all t-intersecting set systems
of maximum size for all possible n (see also [12, 14, 16, 24, 26, 35, 36] for some
related results). There have been many recent results showing that a version
of the Erdős-Ko-Rado theorem holds for combinatorial objects other than set
systems. For example, an analogue of the Erdős-Ko-Rado theorem for the
Hamming scheme is proved in [33]. A complete solution for the t-intersection
problem in the Hamming space is given in [2]. Some recent work done on this
problem and its variants can be found in [4, 5, 6, 8, 9, 10, 15, 18, 19, 25, 30,
31, 37]. The Erdős-Ko-Rado type results also appear in vector spaces [7, 17],
set partitions [20, 22, 21, 29] and weak compositions [23, 27, 28].

In this paper, we consider Erdős-Ko-Rado type results for minimal covers.
Let P(n) be the set of all subsets of [n], and let P2(n) be the set of all subsets
of P(n). Let Z ⊆ [n]. A set A = {A1, A2, . . . , Al} ⊆ P(n) is a cover of Z if
⋃

1≤i≤l Ai = Z. It is a minimal cover of Z if it is a cover of Z and
⋃

1≤i≤l,
i6=j0

Ai 6= Z for all j0 ∈ [l].

Let C(Z) denote the collection of all minimal covers of Z. Note that C(Z) ⊆
P2(n). When Z = [n], we shall write C(n) instead of C([n]). Let Cn = |C(n)|.
For 1 ≤ n ≤ 3, we have

C(1) = {{{1}}} ,
C(2) = {{{1}, {2}}, {{1, 2}}} ,
C(3) = {{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}},

{{1, 2}, {1, 3}}, {{1, 2}, {2, 3}}, {{1, 3}, {2, 3}}, {{1, 2, 3}}} ,
and thus C1 = 1, C2 = 2 and C3 = 8.

Let σ be a permutation on [n]. For each A ⊆ [n], we define σ(A) = {σ(a) :
a ∈ A}. For each A ⊆ P(n), we define σ(A) = {σ(A) : A ∈ A}, and for each
A ⊆ P2(n), we define σ(A) = {σ(A) : A ∈ A}. Two families A,B ⊆ P2(n) are
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said to be isomorphic, denoted by A ∼= B, if they are the same up to relabelling
of the underlying elements, i.e., σ(A) = B.

Let

Q0(t) = {A : A is a minimal cover of [n] \ [t]},
Q1(t) = {A ∈ Q0(t) : {t+ 1} /∈ A},
Q2(t) = {A : A is a minimal cover of [n] \ [t+ 1]},
D0(t) = {{{1}, {2}, . . . , {t}} ∪A} : A ∈ Q0(t)} .

For 1 ≤ l ≤ t, let

Dl(t) = {{{1, t+ 1}, {2, t+ 1}, . . . , {l, t+ 1}, {l+ 1}, . . . , {t}} ∪A :A∈Q1(t)}
∪ {{{1, t+ 1}, {2, t+ 1}, . . . , {l, t+ 1}, {l+ 1}, . . . , {t}} ∪A :A∈Q2(t)} .

Notice that when l = t, we have

Dl(l) = {{{1, l+ 1}, {2, l+ 1}, . . . , {l, l+ 1}} ∪A : A∈Q1(t)}
∪ {{{1, l+ 1}, {2, l+ 1}, . . . , {l, l+ 1}} ∪A : A∈Q2(t)} .

Clearly D0(t) ⊆ C(n), and |D0(t)| = Cn−t. For eachA ∈ Q1(t), the mapping
defined by

{{1, t+ 1}, {2, t+ 1}, . . . ,{l, t+ 1}, {l+ 1}, . . . , {t}} ∪A

7→ {{1}, {2}, . . . ,{l}, {l+ 1}, . . . , {t}} ∪A,

is one-to-one. For each A ∈ Q2(t), the mapping defined by

{{1, t+ 1}, {2, t+ 1}, . . . ,{l, t+ 1}, {l+ 1}, . . . , {t}} ∪A

7→ {{1}, {2}, . . . ,{l}, {l+ 1}, . . . , {t}, {t+ 1}} ∪A,

is also one-to-one. Hence

(1) |Dl(t)| = |D0(t)| = Cn−t

for 1 ≤ l ≤ t. However, some of the elements in Dl(t) do not lie in C(n). For
example, if n ≥ t+ 3, then the set

A′ = {{1, t+ 1}, {2, t+ 1}, . . . , {l, t+ 1}, {l+ 1}, . . . , {t}, {t+ 1, t+ 2},
{t+ 2, t+ 3, . . . , n}}

is in Dl(t), but it is not in C(n) since removing {t+1, t+2} from A′ results in
a collection of sets which is still a cover of [n]. Therefore, for n ≥ t+ 3,

(2) |Dl(t) ∩ C(n)| < |Dl(t)| = Cn−t.

A family A ⊆ C(n) is said to be t-intersecting if |A∩B| ≥ t for all A,B ∈ A.
We suggest the following conjecture on the characterisation of t-intersecting
families of maximum size.
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Conjecture 1.3. There exists a constant n0 = n0(t) depending on t, such that

for all n ≥ n0, if A ⊆ C(n) is t-intersecting, then

|A| ≤ Cn−t.

Moreover, equality holds if and only if A ∼= D0(t).

In this paper, we prove a weaker version of Conjecture 1.3 (see Theorem 1.4
below). To this end, we require a stronger notion of intersection. For a fixed
j ∈ [n], A ∈ P2(n), we define

Nj(A) = |{A ∈ A : j ∈ A}|

to be the number of times j appears in A. If Nj(A) = 1, then j is said to be
critical in A. For example, if A = {{1, 2, 3}, {1, 2, 4}, {1, 5, 6}} ∈ C(6), then
N2(A) = 2 since 2 appears twice in A. Also, 5 is critical in A since N5(A) = 1.

Given any A,B ∈ C(n), we write Inter(A,B) ≥ t if there exist t distinct
elements A1, . . . , At ∈ A ∩ B each containing an element which is critical
in both A and B, i.e., for all 1 ≤ i ≤ t, there exists ai ∈ Ai such that
Nai

(A) = 1 = Nai
(B). For example, if A = {{1, 2, 3}, {1, 2, 4}, {1, 5, 6}} and

B = {{1, 2, 3}, {2, 4, 6}, {2, 3, 5}}, then |A ∩ B| = 1, but Inter(A,B) = 0
because A ∩B = {{1, 2, 3}} and none of the elements in {1, 2, 3} is critical in
both A and B. On the other hand, if C = {{1, 2, 3}, {1, 4, 5}, {1, 2, 6}}, then
Inter(A,C) ≥ 1 since {1, 2, 3} ∈ A ∩C and 3 is critical in both A and C. In
general, if Inter(A,B) ≥ t + 1, then Inter(A,B) ≥ t. Also, Inter(A,B) ≥ t
implies that |A ∩B| ≥ t.

A family A ⊆ C(n) is said to be restricted t-intersecting if Inter(A,B) ≥ t
for any A,B ∈ A.

Theorem 1.4. There exists a constant n0 = n0(t) depending on t, such that

for all n ≥ n0, if A ⊆ C(n) is restricted t-intersecting, then

|A| ≤ Cn−t.

Moreover, equality holds if and only if A ∼= D0(t).

Families A1,A2, . . . ,Ar ⊆ C(n) are said to be r-cross t-intersecting if |A1 ∩
A2 ∩ · · · ∩ Ar| ≥ t for all Ai ∈ Ai. As in the case for sets, we will just say
r-cross intersecting to mean r-cross 1-intersecting and cross t-intersecting to
mean 2-cross t-intersecting.

Conjecture 1.5. There exists a constant n0 = n0(r) depending on r, such

that for all n ≥ n0, if A1,A2, . . . ,Ar ⊆ C(n) are r-cross intersecting, then

r
∏

i=1

|Ai| ≤ Cr
n−1.

Moreover, equality holds if and only if A1 = A2 = · · · = Ar and A1
∼= D0(1).
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We will prove a weaker version of Conjecture 1.5 (Theorem 1.6). Given
any A1,A2, . . . ,Ar ∈ C(n), we write Inter(A1,A2, . . . ,Ar) ≥ t if there exist
t distinct elements A1, A2, . . . , At ∈ A1 ∩ A2 ∩ · · · ∩ Ar each containing a
critical element in all of the Aj . Families A1,A2, . . . ,Ar ⊆ C(n) are said to be
restricted r-cross t-intersecting if Inter(A1,A2, . . . ,Ar) ≥ t for all Ai ∈ Ai.
As before, we will just say restricted r-cross intersecting to mean restricted r-
cross 1-intersecting and restricted cross t-intersecting to mean restricted 2-cross
t-intersecting.

Theorem 1.6. There exists a constant n0 = n0(r) depending on r, such that

for all n ≥ n0, if A1,A2, . . . ,Ar ⊆ C(n) are restricted r-cross intersecting, then

r
∏

i=1

|Ai| ≤ Cr
n−1.

Moreover, equality holds if and only if A1 = A2 = · · · = Ar and A1
∼= D0(1).

Theorem 1.4 and Theorem 1.6 are proved in Sections 3 and 4 respectively.

2. Splitting operation

Lemma 2.1. Every set in a minimal cover of [n] contains a critical element.

In particular, if A ∈ C(n) and B = {j} is a singleton in A, then j is critical

in A.

Proof. Let A ∈ C(n), and A ∈ A. By definition, removing A from A results
in an element of P2(n) which is no longer a cover of [n]. So there must be an
element in A which does not appear elsewhere in A. Thus, this element must
be critical in A. �

Let T ⊆ [n] and |T | ≥ 2. For each A ∈ C(n) with T ∈ A, we define

P (T,A) = {{q} : q ∈ T and q is critical in A}.
By Lemma 2.1, P (T,A) 6= ∅. The T -split of A, denoted by sT (A), is defined
as follow: If T is not a set in A, then the T -split is just A itself. Otherwise, we
replace T by all the singleton sets each consisting of a critical element found in
T . Formally,

(O1) sT (A) = A, if T /∈ A;
(O2) sT (A) = (A \ {T }) ∪ P (T,A), if T ∈ A.

Lemma 2.2. sT (A) ∈ C(n) for all A ∈ C(n).

Proof. We can assume that T ∈ A. By removing T from A and adding the sin-
gleton set {v} for every critical element v ∈ T , we clearly still have that sT (A)
covers [n]. Furthermore, as we have only reduced the number of occurrences of
non-critical elements, every set in sT (A) still has a critical element, and so it
must be a minimal cover of [n]. �
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For a family A ⊆ C(n), let sT (A) = {sT (A) : A ∈ A}. By Lemma 2.2,
sT (A) ⊆ C(n). Any family A ⊆ C(n) can be decomposed with respect to a
given T ⊆ [n] with |T | ≥ 2 as follows:

A = (A \ AT ) ∪ AT ,

where AT = {A ∈ A : sT (A) 6∈ A}. Define the T -splitting of A to be the
family

ST (A) = (A \ AT ) ∪ sT (AT ).

Lemma 2.3. |ST (A)| = |A| for all A ⊆ C(n).
Proof. If AT = ∅, then ST (A) = A and the lemma holds. Suppose AT 6= ∅.
Clearly, sT (AT )∩(A\AT ) = ∅. So, it is sufficient to show that sT is one-to-one
on AT , i.e., sT (A) = sT (B) implies that A = B for A,B ∈ AT . Note that
T ∈ A ∩B and both sT (A) and sT (B) are obtained by operation (O2). So,

sT (A) = A \ {T } ∪ P (T,A),

sT (B) = B \ {T } ∪ P (T,B).

If P (T,A) ∩B \ {T } 6= ∅, then {q} ∈ B \ {T } for some q ∈ T . So, q appears
at least 2 times in B (once in {q} and once in T ), contradicting Lemma 2.1.
Thus, P (T,A) ∩B \ {T } = ∅. Similarly, P (T,B) ∩A \ {T } = ∅. Therefore,
P (T,A) = P (T,B) and A \ {T } = B \ {T }. Hence, A = B. �

Let I(n, t) be the set of all restricted cross t-intersecting families in C(n),
i.e.,

I(n, t) = {(A1,A2) : A1,A2 ⊆ C(n) are restricted cross t-intersecting}.
Note that (A,A) ∈ I(n, t) if and only if A is restricted t-intersecting. Given
any (A1,A2) ∈ I(n, t), the T -splitting of (A1,A2) is defined to be the set
(ST (A1), ST (A2)).

For any (A1,A2) ∈ I(n, t), splitting operations preserve the size (Lemma
2.3) and the intersecting property (Lemma 2.4).

Lemma 2.4. Let T ⊆ [n] with |T | ≥ 2. If (A1,A2) ∈ I(n, t), then

(ST (A1), ST (A2)) ∈ I(n, t).

Proof. Note that Inter(A,B) ≥ t for all A ∈ A1 \ (A1)T and B ∈ A2 \ (A2)T ,
where (A1)T = {A ∈ A1 : sT (A) 6∈ A1}, (A2)T = {A ∈ A2 : sT (A) 6∈ A2}.
So, it is sufficient to show that Inter(A,B) ≥ t for any A ∈ ST (A1) and
B ∈ sT ((A2)T ) (the case A ∈ ST (A2) and B ∈ sT ((A1)T ) can be proved
similarly).
(Case 1) Suppose A ∈ A1 \ (A1)T and B ∈ sT ((A2)T ).

Let B = sT (C) for some C ∈ (A2)T . Then T ∈ C and B = C \ {T } ∪
P (T,C). Suppose T /∈ A. Then T /∈ A ∩ C. Since Inter(A,C) ≥ t, there
exist A1, . . . , At ∈ A ∩ C each containing a critical element in both A and
C. Since T 6= Ai for all i, we have A1, . . . , At ∈ A ∩ C \ {T } ⊆ A ∩ B. So,
Inter(A,B) ≥ t.
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Suppose T ∈ A. Then A \ {T } ∪ P (T,A) = sT (A) ∈ A1. Since C ∈ A2,
we have Inter(sT (A),C) ≥ t, and so there exist B1, . . . , Bt ∈ sT (A) ∩C each
containing a critical element in both sT (A) and C. If Bi0 ∈ P (T,A) for some
i0, then Bi0 = {q0} for some q0 ∈ T , and q0 appears at least 2 times in C (once
in Bi0 and once in T ), contradicting Lemma 2.1. Thus, Bi ∈ A \ {T } for all i.
This implies that B1, . . . , Bt ∈ A ∩C \ {T } ⊆ A ∩B. Hence, Inter(A,B) ≥ t.
(Case 2) Suppose A ∈ sT ((A1)T ) and B ∈ sT ((A2)T ).

Let A = sT (C) and B = sT (D) for some C ∈ (A1)T and D ∈ (A2)T . Then

A = C \ {T } ∪ P (T,C),

B = D \ {T } ∪ P (T,D).

Since Inter(C,D) ≥ t, there exist C1, . . . , Ct ∈ C ∩ D each containing a
critical element in C and D. If T 6= Ci for all i, then C1, . . . , Ct ∈ (C \ {T })∩
(D \ {T }) ⊆ A∩B. Hence, Inter(A,B) ≥ t. Suppose T = Ci0 for some i0. For
convenience, we may assume that T = C1. Since Ci 6= T for all i 6= 1, we have
C2, . . . , Ct ∈ (C \ {T })∩ (D \ {T }) ⊆ A∩B. Let c1 ∈ C1 be a critical element
in C1. Then {c1} ∈ P (T,C) ∩ P (T,D) ⊆ A ∩B, and c1 is critical in both A

and B. Since {c1}, C2, . . . , Ct ∈ A ∩B, we deduce that Inter(A,B) ≥ t.
This completes the proof of the lemma. �

A family A ⊆ C(n) is compressed if for any T ⊆ [n] with |T | ≥ 2, we have
ST (A) = A. For any A ∈ C(n), define β(A) = |{A ∈ A : |A| = 1}|, i.e., β(A)
is the number of singletons in A.

Lemma 2.5. Let (A1,A2) ∈ I(n, t). By repeatedly applying the splitting oper-

ations on (A1,A2), we eventually obtain compressed families A∗
1 and A∗

2 with

|A∗
1| = |A1|, |A∗

2| = |A2|, and (A∗
1,A∗

2) ∈ I(n, t).

Proof. For any (A1,A2)∈I(n, t), let w((A1,A2))=
∑

A∈A1
β(A)+

∑

A∈A2
β(A).

Note that if ST (Ai) 6= Ai for some i ∈ {1, 2}, then
∑

A∈ST (Ai)
β(A) >

∑

A∈Ai
β(A). This implies that w((A1,A2)) < w((ST (A1), ST (A2))). So,

the splitting operations cannot go on forever. Eventually, we will obtain A∗
1

and A∗
2 with |A∗

1| = |A1|, |A∗
2| = |A2|, and (A∗

1,A∗
2) ∈ I(n, t) (Lemmas 2.3 and

2.4). �

Let A ∈ C(n). For each A ∈ A, let

γ(A) = {x : {x} ∈ A},
i.e., γ(A) is the union of all the singletons in A. Let γ(A) = {γ(A) : A ∈ A}.
Lemma 2.6. If A1 is compressed and (A1,A2) ∈ I(n, t), then γ(A1), γ(A2)
are cross t-intersecting families of subsets.

Proof. Suppose γ(A1), γ(A2) are not cross t-intersecting. Then there exist
A ∈ A1 and B ∈ A2 with |γ(A) ∩ γ(B)| ≤ t − 1. Let Inter(A,B) = s.
Note that s ≥ t and there exist A1, . . . , As ∈ A ∩B each containing a critical
element in both A and B. The sets A1, . . ., As cannot be all singletons since
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|γ(A)∩γ(B)| ≤ t− 1. By relabeling if necessary, we may assume that |Ai| = 1
for 1 ≤ i ≤ l and |Ai| ≥ 2 for l + 1 ≤ i ≤ s. If none of the Ai’s are singletons,
then we may assume that l = 0 and |Ai| ≥ 2 for 1 ≤ i ≤ s. Note that l ≤ t− 1
since |γ(A) ∩ γ(B)| ≤ t− 1.

Since A1 is compressed, we have A1 = sAl+1
(A) ∈ A1. Note that Inter(A1,

B) = s − 1. Let A2 = sAl+2
(A1). Then A2 ∈ A1 and Inter(A2,B) = s − 2.

By applying the splitting operations for Al+1, Al+2, . . . , As, we will obtain

C = sAs

(

sAs−1

(

· · · sAl+1
(A
))

∈ A1.

Furthermore, Inter(C,B) = l ≤ t−1. This contradicts the fact that {A1,A2} ∈
I(n, t). Hence, γ(A1), γ(A2) are cross t-intersecting. �

The proof of the following lemma is straightforward and hence omitted.

Lemma 2.7. If σ is a permutation of [n], then for any A ⊆ C(n), T ⊆ [n] with
|T | ≥ 2, we have σ(ST (A)) = Sσ(T )(σ(A)).

Lemma 2.8. Let A ∈ C(n), T ⊆ [n] and |T | ≥ 2. If A ∈ sT (A) and |A| ≥ 2,
then A ∈ A and A * T .

Proof. Note that sT (A) = A \ {T }∪P (T,A) and |B| = 1 for all B ∈ P (T,A).
Therefore, A ∈ A \ {T } ⊆ A. If A ⊆ T , then every element in A will appear at
least 2 times in A (once in A and once T ), contradicting Lemma 2.1. Hence,
A * T . �

Lemma 2.9. Let n ≥ t + 3. Suppose (A1,A2) ∈ I(n, t) and |A1|, |A2| ≥
|D0(t)| > 1. Let T ⊆ [n] and |T | ≥ 2. If ST (A1) = ST (A2) ∼= D0(t), then

A1 = A2, and A1
∼= D0(t).

Proof. There is a permutation σ of [n] with σ(ST (Ai)) = D0(t) for 1 ≤ i ≤ 2.
By Lemma 2.7, Sσ(T )(σ(Ai))) = D0(t). If σ(A1) = σ(A2), and σ(A1) ∼= D0(t),
then A1 = A2, and A1

∼= D0(t). Furthermore, (σ(A1), σ(A2)) ∈ I(n, t) and
|σ(A1)|, |σ(A2)| ≥ |D0(t)| > 1. So, without loss of generality, we may assume
that ST (Ai) = D0(t) for i = 1, 2.

Recall that

D0(t) = {{{1}, {2}, . . . , {t}} ∪A} : A ∈ Q0(t)} ,
where Q0(t) = {A : A is a minimal cover of [n] \ [t]}. Let

B = {{1}, {2}, . . . , {t}, {t+ 1, t+ 2, . . . , n}} ∈ D0(t).

We first prove the following claim.
(Claim 1.) If B ∈ A1 ∪A2, then B ∈ A1 ∩ A2, and A1 = A2 = D0(t).

Without loss of generality, we may assume that B ∈ A1.
We first prove that A2 = D0(t). Assume, for a contradiction, that A2 6=

D0(t). Then there exists a C ∈ A2 such that {i} /∈ C for some 1 ≤ i ≤ t. Now,
the condition Inter(B,C) ≥ t implies that

C = {{1}, {2}, . . . , {i− 1}, V, {i+ 1}, . . . , {t}, {t+ 1, t+ 2, . . . , n}},
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where i ∈ V and |V | ≥ 2. Note that V ∩ {1, 2, . . . , i − 1, i + 1, . . . , t} = ∅
for otherwise there exists j ∈ {1, 2, . . . , i − 1, i + 1, . . . , t} such that j appears
at least 2 times in C (once in {j} and once in V ), contradicting Lemma 2.1.
Similarly, {t+1, t+2, . . . , n} * V . Since sT (C) ∈ D0(t), we have {i} ∈ sT (C).
Thus, T = V .

Let

D = {{1}, {2}, . . . , {t}, {t+ 1, t+ 2}, {t+ 1, t+ 3, . . . , n}} ∈ D0(t).

Note that Inter(D,C) = t − 1 since D ∩ C = {{1}, {2}, . . . , {i − 1}, {i +
1}, . . . , {t}}. Therefore, D /∈ A1. Since D ∈ ST (A1) = D0(t), there is E ∈ A1

with T ∈ E and sT (E) = D. By Lemma 2.8, {t+1, t+2}, {t+1, t+3, . . . , n} ∈ E.
From Inter(E,C) ≥ t, we must have

E = {{1}, {2}, . . . , {i− 1}, V, {i+ 1}, . . . , {t},
{t+ 1, t+ 2}, {t+ 1, t+ 3, . . . , n}}.

Let F ∈ A2 \ {C} (such an F exists because |A2| ≥ 2). The aim is to arrive
at a contradiction by showing that such F could never exist.

Suppose {t+ 1, t+ 2, . . . , n} ∈ F. Then {t+ 1, t+ 2}, {t+ 1, t+ 3, . . . , n} /∈
F (otherwise it contradicts Lemma 2.1). From Inter(E,F) ≥ t, we have
{{1}, {2}, . . . , {i − 1}, V, {i + 1}, . . . , {t}} ⊆ F. Thus, F = C, a contra-
diction. So, we may assume that {t + 1, t + 2, . . . , n} /∈ F. Now, from
Inter(B,F) ≥ t, we have {{1}, {2}, . . . , {t}} ⊆ F. This implies that V /∈ F

(otherwise both {i}, V ∈ F, contradicting Lemma 2.1). From Inter(E,F) ≥ t,
we have {t+1, t+2} ∈ F or {t+1, t+3, . . . , n} ∈ F. In either case, we always
have {t+ 1} /∈ F.

Next, we claim that {j} /∈ F for t+ 1 ≤ j ≤ n. Since {t+ 1} /∈ F from the
preceding paragraph, it remains to show that {j} /∈ F for t + 2 ≤ j ≤ n. For
t+ 2 ≤ j ≤ n, let

Gj = {{1}, {2}, . . . , {t}, {t+ 1, j}, {t+ 2, t+ 3, . . . , n}} ∈ D0(t).

Note that Gj /∈ A1 since Inter(Gj ,C) = t − 1. Since Gj ∈ ST (A1), there is
Hj ∈ A1 with T ∈ Hj such that sT (Hj) = Gj . By Lemma 2.8, {t+ 1, j}, {t+
2, t+ 3, . . . , n} ∈ Hj. From Inter(Hj ,C) ≥ t, we must have

Hj = {{1}, {2}, . . . , {i− 1}, V, {i+ 1}, . . . , {t},
{t+ 1, j}, {t+ 2, t+ 3, . . . , n}}.

Now, Inter(Hj ,F) ≥ t implies that either {t+1, j} ∈ F or {t+2, t+3, . . . , n} ∈
F. Thus, {j} /∈ F for t+2 ≤ j ≤ n; otherwise j would appear twice in F, once
in {j} and once in either {t+1, j} or {t+2, t+3, . . . , n} contradicting Lemma
2.1. Hence {j} 6∈ F for all t+ 1 ≤ j ≤ n.

For t+ 1 ≤ j ≤ t+ 3, let Yj = {t+ 1, t+ 2, . . . , n} \ {j} and

Yj = {{1}, {2}, . . . , {t}, {j}, Yj} ∈ D0(t).



884 C. Y. KU AND K. B. WONG

Now, Yj /∈ A1 since Inter(Yj ,C) = t−1. Therefore, there exists Zj ∈ A1 with
T ∈ Zj and sT (Zj) = Yj . By Lemma 2.8, Yj ∈ Zj . Moreover, |Yj | ≥ 2 since
n− t ≥ 3. From Inter(Zj ,C) ≥ t, we must have

{{1}, {2}, . . . , {i− 1}, V, {i+ 1}, . . . , {t}} ⊆ Zj .

Therefore,

Zj =

{

{{1}, {2}, . . . , {i− 1}, V, {i+ 1}, . . . , {t}, Yj}, if j ∈ V ;

{{1}, {2}, . . . , {i− 1}, V, {i+ 1}, . . . , {t}, {j}, Yj}, if j /∈ V .

If j ∈ V , then Inter(Zj ,F) ≥ t implies that Yj ∈ F. If j /∈ V , then Inter(Zj ,F)
≥ t implies that either {j} ∈ F or Yj ∈ F. Since {j} /∈ F for t + 1 ≤ j ≤ n,
we can only have Yj ∈ F. Hence, Yj ∈ F in all t + 1 ≤ j ≤ t + 3. In
particular, we have Yt+1 = {t + 2, t + 3, . . . , n}, Yt+2 = {t + 1, t + 3, . . . , n},
Yt+3 = {t+ 1, t+ 2, t+ 4 . . . , n} ∈ F and this contradicts Lemma 2.1, because
every element in {t+ 2, t+ 3, . . . , n} appears at least 2 times in F.

We conclude that no such F exists. This contradiction shows that A2 =
D0(t). Consequently, B ∈ A2 and thus B ∈ A1 ∩ A2. By repeating the above
argument starting with B ∈ A2, we deduce that A1 = D0(t). Hence, Claim 1
is proved.

We now proceed to prove the lemma. If B ∈ A1, then the result of the
lemma holds by Claim 1. So we may suppose that B /∈ A1.

Then there exists Q ∈ A1 with sT (Q) = B. Note that T ∈ Q and

B = Q \ {T } ∪ P (T,Q).

By Lemma 2.8, {t + 1, t + 2, . . . , n} ∈ Q and {t + 1, t + 2, . . . , n} * T . Note
that P (T,Q) ⊆ {{1}, {2}, . . . , {t}}. If |P (T,Q)| ≥ 2, then |Q \ {T }| ≤ t − 1
and |Q| ≤ t. Since (A1,A2) ∈ I(n, t), we must have A2 = {Q}, contradicting
|A2| > 1. Thus, |P (T,Q)| = 1 and P (T,Q) = {{j0}} for some 1 ≤ j0 ≤ t.

Suppose |T | ≥ 3. Then T = {j0}∪X for some X ⊆ {t+1, t+2, . . . , n} with
|X | ≥ 2. Let Y = {t+ 1, t+ 2, . . . , n} \X and

R = {{1}, {2}, . . . , {t}, X, Y }.
Note that R /∈ A2 since Inter(R,Q) = t− 1. In fact Q ∩R = {{1}, . . . , {j0 −
1}, {j0 + 1}, . . . , {t}}. Since R ∈ ST (A2) = D0(t), there exists S ∈ A2 with
T ∈ S and sT (S) = R. By Lemma 2.8, X ∈ S and X * T , a contradiction.
Hence, |T | = 2 and T = {i0, j0} or some i0 ∈ {t+1, t+2, . . . , n}. Subsequently,
from sT (Q) = B, we deduce that

Q={{1}, {2}, . . . , {j0 − 1}, T ={i0, j0}, {j0 + 1}, . . . , {t}, {t+ 1, t+ 2, . . . , n}},
and |Q| = t+ 1.

Since B 6∈ A1 and Q ∈ A1, it follows from Claim 1 that

B ={{1}, {2}, . . . , {t}, {t+ 1, t+ 2, . . . , n}} /∈ Ai, and

Q ={{1}, {2}, . . . , {j0 − 1}, T = {i0, j0}, {j0 + 1}, . . . , {t},



AN ERDŐS-KO-RADO THEOREM FOR MINIMAL COVERS 885

{t+ 1, t+ 2, . . . , n}} ∈ Ai for i = 1, 2.

Let U ∈ A2 \ {Q}. If T 6∈ U, then sT (U) = U ∈ D0(t) and so {{1}, {2}, . . .,
{t}} ⊆ U. Next, Inter(U,Q) ≥ t implies that {t+ 1, t+ 2, . . . , n} ∈ U. Thus,
U = B ∈ A2, a contradiction. Hence T ∈ U.

Suppose {k} 6∈ U for some k ∈ {1, 2, . . . , t}\{j0}. Then there is a set K ∈ U

with |K| ≥ 2 and k ∈ K. Since K 6= T , we have K ∈ sT (U). Also, since
sT (U) ∈ D0(t), we have {k} ∈ sT (U). This contradicts Lemma 2.1 because k
appears twice in sT (U) (once in {k} and once in K). Hence, {k} ∈ U for all
k ∈ {1, 2, . . . , t} \ {j0}. This implies that every element U ∈ A2 is of the form

{{1}, {2}, . . . , {j0 − 1}, T = {i0, j0}, {j0 + 1}, . . . , {t}} ∪W,

where W is a minimal cover of [n] \ [t] with {i0} /∈ W. Therefore, A2 ⊆ D,
where D ∼= D1(t). In fact, since not all elements in D1(t) are minimal covers,
we have A2 ⊆ D ∩ C(n) and so it follows from (2) that

|A2| ≤ |D1(t) ∩ C(n)| < Cn−t,

contradicting the assumption that |A2| ≥ |D0(t)| = Cn−t.
This completes the proof of the lemma. �

3. Proof of Theorem 1.4

For each Z ⊆ [n], let ˜C(Z)={A ∈ C(Z) : A does not contain any singleton}.
When Z = [n], we shall write ˜C(n) instead of ˜C([n]). Let ˜Cn = |˜C(n)|.

Lemma 3.1. Let n ≥ 2. Then

Cn =

n
∑

k=0

(

n

k

)

˜Cn−k,(3)

˜Cn ≥
n−1
∑

k=1

(

n− 1

k

)

˜Cn−1−k,(4)

with the conventions C0 = ˜C0 = 1.

Proof. Let T ⊆ [n] and C(n)(T ) be the set of all A ∈ C(n) such that the only
singletons in A are those in T , i.e.,

C(n)(T ) = {A ∈ C(n) : {x} ∈ A if and only if x ∈ T}.

Note that if A ∈ C(n)(T ), then every x ∈ T is critical in A (Lemma 2.1).

Therefore, A \ {{x} : x ∈ T } ∈ ˜C([n] \ T ). Hence, |C(n)(T )| = ˜Cn−|T |.
Note that

⋃

T⊆[n] C(n)(T ) ⊆ C(n). Now, for each A0 ∈ C(n), there is a

T0 ⊆ [n] such that {x} ∈ A if and only if x ∈ T0. Thus, A0 ∈ C(n)(T0) and
⋃

T⊆[n] C(n)(T ) = C(n).
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Note that C(n)(T ) ∩ C(n)(T ′) = ∅ for T 6= T ′. So,

Cn = |C(n)| =

∣

∣

∣

∣

∣

∣

⋃

T⊆[n]

C(n)(T )

∣

∣

∣

∣

∣

∣

=

n
∑

k=0

(

n

k

)

˜Cn−k,

proving (3).
Let T ⊆ [n− 1], |T | ≥ 1 and V (T ) be the set of all A ∈ C(n− 1) such that

T ∈ A and A \ {T } is a minimal cover of [n− 1] \ T that does not contain any
singletons, i.e.,

V (T ) = {A ∈ C(n− 1) : T ∈ A and A \ {T } ∈ ˜C([n− 1] \ T )}.

Then |V (T )| = ˜Cn−1−|T |. Let

V (T ) = {(A \ {T })∪ {{T ∪ {n}}} : A ∈ V (T )}.

Note that V (T ) ⊆ ˜C(n) and |V (T )| = |V (T )| = ˜Cn−1−|T |. Furthermore, V (T )∩
V (T ′) = ∅ for T 6= T ′. So, from

⋃

T⊆[n−1],|T |≥1 V (T ) ⊆ ˜C(n), we have

n−1
∑

k=1

(

n− 1

k

)

˜Cn−1−k =

∣

∣

∣

∣

∣

∣

⋃

T⊆[n−1],|T |≥1

V (T )

∣

∣

∣

∣

∣

∣

≤ |˜C(n)| = ˜Cn,

proving (4). �

Given a real number x, we shall denote the greatest integer less than or
equal to x, by ⌊x⌋. Note that ⌊x⌋ ≤ x < ⌊x⌋+ 1.

Lemma 3.2. Given any positive integers m, c and t with m ≥ 2, there is a

positive integer n0 = n0(m, c, t) depending on m, c and t, such that for n ≥ n0,

˜Cn−t > cn
∑

⌊ n

m
⌋≤k≤n

(

n

k

)

˜Cn−k.

Proof. Since ˜Cn−⌊n/m⌋+2 ≥ ˜Cn−k for all ⌊n/m⌋ ≤ k ≤ n, we have

∑

⌊ n

m
⌋≤k≤n

(

n

k

)

˜Cn−k ≤ ˜Cn−⌊ n

m
⌋+2

∑

⌊ n

m
⌋≤k≤n

(

n

k

)

≤ 2n ˜Cn−⌊ n

m
⌋+2.

So, it is sufficient to show that ˜Cn−t/ ˜Cn−⌊ n

m
⌋+2 > (2c)n.

Now, n− ⌊ n
m⌋+ 4 > (2c)4m + 1 provided that n ≥ m

m−1 (2c)
4m. So, by (4),

˜Cl/ ˜Cl−2 ≥ l − 1 > (2c)4m for l ≥ n− ⌊ n
m⌋+ 4. Therefore,

˜Cn−t

˜Cn−⌊ n

m
⌋+2

≥
(

˜Cn−⌊ n

m
⌋+2u

˜Cn−⌊ n

m
⌋+2u−2

)

· · ·
(

˜Cn−⌊ n

m
⌋+6

˜Cn−⌊ n

m
⌋+4

)(

˜Cn−⌊ n

m
⌋+4

˜Cn−⌊ n

m
⌋+2

)

> ((2c)4m)u−1,
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where u = ⌊ 1
2 (⌊ n

m⌋ − t − 2)⌋. Note that u − 1 ≥ 1
2 (

n
m − t − 3) − 2 ≥ n

4m

provided that n ≥ 2m(t+7). Hence, for sufficiently large n, ˜Cn−t/ ˜Cn−⌊ n

m
⌋+2 >

(2c)n. �

Let A ⊆ C(n) be compressed. Recall that γ(A) = {γ(A) : A ∈ A}, where
γ(A) is the union of all the singletons in A. We say γ(A) is trivial if there is
a fixed t-set, say T , such that T ⊆ γ(A) for all A ∈ A.

Lemma 3.3. There is a positive integer n0 = n0(t) depending on t, such that

for n ≥ n0, if A ⊆ C(n) is compressed and is restricted t-intersecting, and γ(A)
is non-trivial, then

|A| < Cn−t.

Proof. Note that (A,A) ∈ I(n, t). By Lemma 2.6, γ(A) and γ(A) are cross

t-intersecting, i.e., γ(A) is t-intersecting. For k ≥ t, let Fk = γ(A) ∩
(

[n]
k

)

.
Then Fk is t-intersecting. If Ft 6= ∅, then γ(A) is trivial. So, we may assume
that Ft = ∅. By using Lemma 2.1, it is not hard to see that for each A ∈ A,

A \ {{x} : x ∈ γ(A)} ∈ ˜C([n] \ γ(A)).

Therefore,

|A| ≤
∑

t+1≤k≤n

|Fk| ˜Cn−k

=
∑

t+1≤k≤⌊ n

t+1
+t−1⌋

|Fk| ˜Cn−k +
∑

⌊ n

t+1
+t−1⌋+1≤k≤n

|Fk| ˜Cn−k.

By Theorem 1.1, |Fk| ≤
(

n−t
k−t

)

for t+ 1 ≤ k ≤
⌊

n
t+1 + t− 1

⌋

. Therefore,

∑

t+1≤k≤⌊ n

t+1
+t−1⌋

|Fk| ˜Cn−k ≤
∑

t+1≤k≤⌊ n

t+1
+t−1⌋

(

n− t

k − t

)

˜Cn−k

=
∑

1≤k≤⌊ n

t+1
+t−1⌋−t

(

n− t

k

)

˜Cn−t−k

≤
∑

1≤k≤n−t

(

n− t

k

)

˜Cn−t−k

= Cn−t − ˜Cn−t,

where the last equality follows from equation (3).

On the other hand, |Fk| ≤
(

n
k

)

for
⌊

n
t+1 + t− 1

⌋

+ 1 ≤ k ≤ n. Therefore,

∑

⌊ n

t+1
+t−1⌋+1≤k≤n

|Fk| ˜Cn−k ≤
∑

⌊ n

t+1
+t−1⌋+1≤k≤n

(

n

k

)

˜Cn−k
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≤
∑

⌊ n

t+1⌋≤k≤n

(

n

k

)

˜Cn−k

< ˜Cn−t,

where the last inequality follows from Lemma 3.2 for sufficiently large n in
terms of t. Hence, |A| < Cn−t. �

Proof of Theorem 1.4. Note that (D0(t),D0(t)) ∈ I(n, t) and |D0(t)| = Cn−t

for 0 ≤ l ≤ t. Let A be restricted t-intersecting of maximum size. Then
(A,A) ∈ I(n, t) and |A| ≥ Cn−t. Repeatedly apply the splitting operations un-
til we obtain a compressed A∗ with |A∗| = |A| and (A∗,A∗) ∈ I(n, t) (Lemma
2.5). By Lemma 2.6, γ(A∗) is t-intersecting. If γ(A∗) is non-trivial, then by
Lemma 3.3, |A| = |A∗| < Cn−t, a contradiction. Hence, γ(A∗) is trivial.

Let T = {x1, . . . , xt} be the t-set such that T ⊆ γ(A) for all A ∈ A∗. Let
σ be a permutation of [n] with σ(xi) = i for all i. Then σ(A∗) ⊆ D0(t). Since
|σ(A∗)| = |A∗| ≥ |D0(t)|, we deduce that σ(A∗) = D0(t). By Lemma 2.9, we
conclude that A ∼= D0(t).

This completes the proof of Theorem 1.4. �

4. Proof of Theorem 1.6

Let

Ck(n) = {A ∈ C(n) : |A| = k},
and Cn,k = |Ck(n)|. Clearly,

(5) Cn =

n
∑

k=1

Cn,k.

Lemma 4.1. For n ≥ 1, ˜Cn+1 ≤ 2n+1Cn.

Proof. We first define a function f : ˜C(n+1) → C(n). LetA = {A1, A2, . . . , Ak}
∈ ˜C(n + 1). If {A1 \ {n+ 1}, A2 \ {n+ 1}, . . . , Ak \ {n+ 1}} ∈ C(n), then we
say A is of Type I, otherwise, we say A is of Type II.

If A is of Type I, then we set

f(A) = {A1 \ {n+ 1}, A2 \ {n+ 1}, . . . , Ak \ {n+ 1}}.
By Lemma 2.1, every set Ai contains a critical element in A. Furthermore, if

every Ai contains a critical element different from n+1, then {A1\{n+1}, A2\
{n+1}, . . . , Ak\{n+1}} ∈ C(n). So, {A1\{n+1}, A2\{n+1}, . . . , Ak\{n+1}} /∈
C(n) if and only if there exists a unique i0 ∈ {1, . . . , k} such that n+ 1 is the
only critical element contained in Ai0 , in which case we have Ai0 \ {n + 1} ⊆
A1 ∪ · · · ∪Ai0−1 ∪Ai0+1 ∪ · · · ∪Ak and {A1, . . . , Ai0−1, Ai0+1, . . . , Ak} ∈ C(n).
Therefore, if A is of Type II, then we set

f(A) = {A1, . . . , Ai0−1, Ai0+1, . . . , Ak},
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which is well-defined by the uniqueness of i0.
Let B = {B1, B2, . . . , Bk} ∈ Ck(n). Consider B = {B1, B2, . . . , Bk} where

Bi = Bi ∪ {n+ 1} if |Bi| = 1, and Bi = Bi ∪ {n+ 1} or Bi if |Bi| 6= 1. Note

that B = {B1, B2, . . . , Bk} ∈ ˜C(n+ 1) and f(B) = B. Therefore, the number
of Type I minimal covers in f−1(B) is at most 2k ≤ 2n.

Let C ∈ f−1(B) be of Type II. Then |Bi| ≥ 2 for 1 ≤ i ≤ k and C =
{B0, B1, B2, . . . , Bk} where B0 = A ∪ {n + 1}, A ⊆ [n] and A 6= ∅. So, the
number of Type II minimal covers in f−1(B) is at most 2n. Hence, |f−1(B)| ≤
2n + 2n = 2n+1.

Note that

˜Cn+1 =

n
∑

k=1

∑

B∈Ck(n)

f−1(B)

≤ 2n+1
n
∑

k=1

∑

B∈Ck(n)

1

= 2n+1
n
∑

k=1

Cn,k = 2n+1Cn (by equation (5)).
�

Let A1,A2 ⊆ C(n) be compressed. We say that (γ(A1), γ(A2)) is trivial if
there exists x ∈ [n], such that x ∈ γ(A) for all A ∈ A1 and A ∈ A2.

Lemma 4.2. There is a positive integer n0, such that for n ≥ n0, if A1,A2 ⊆
C(n) are compressed, (A1,A2) ∈ I(n, 1), and (γ(A1), γ(A2)) is non-trivial,

then

|A1||A2| < C2
n−1.

Proof. For 1 ≤ i ≤ 2 and k ≥ 1, let Fik = γ(Ai) ∩
(

[n]
k

)

. By Lemma 2.6,
γ(A1), γ(A2) are cross intersecting. Therefore, if Fi1 6= ∅ for i = 1, 2, then
(γ(A1), γ(A2)) is trivial. So, we may assume that F21 = ∅. By using Lemma
2.1, it is not hard to see that for each A ∈ Ai,

A \ {{x} : x ∈ γ(A)} ∈ ˜C([n] \ γ(A)).

Therefore, |A1| ≤
∑

1≤k≤n |F1k| ˜Cn−k and |A2| ≤
∑

2≤k≤n |F2k| ˜Cn−k. So,

|A1| ≤
∑

1≤k<⌊n

2
⌋

|F1k| ˜Cn−k +
∑

⌊n

2
⌋≤k≤n

|F1k| ˜Cn−k

≤
∑

1≤k<⌊n

2
⌋

|F1k| ˜Cn−k +
∑

⌊n

2
⌋≤k≤n

(

n

k

)

˜Cn−k,

and

|A2| ≤
∑

2≤k<⌊n

2
⌋

|F2k| ˜Cn−k +
∑

⌊n

2
⌋≤k≤n

(

n

k

)

˜Cn−k.
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Let

Q =
∑

⌊n

2
⌋≤k≤n

(

n

k

)

˜Cn−k,

M1 =
∑

1≤k<⌊n

2
⌋

|F1k| ˜Cn−k,

M2 =
∑

2≤k<⌊n

2
⌋

|F2k| ˜Cn−k.

Then

|A1||A2| ≤ (M1 +Q)(M2 +Q)

= M1M2 +M1Q+M2Q+Q2.

By equation (3), ˜Cn−1 ≤ Cn−1. By Lemma 4.1, ˜Cn ≤ 2nCn−1. By equation

(4), for 2 ≤ k < ⌊n
2 ⌋, ˜Cn−k ≤ ˜Cn ≤ 2nCn−1. Therefore,

M1 ≤ Cn−1|F11|+ 2nCn−1

∑

2≤k<⌊n

2
⌋

|F1k|

≤ 2n+1Cn−1

∑

1≤k<⌊n

2
⌋

|F1k|

≤ 2n+1Cn−1

∑

1≤k<⌊n

2
⌋

(

n

k

)

≤ 22n+1Cn−1.

Similarly, M2 ≤ 22nCn−1.

By Lemma 3.2, Q ≤ 1
8n
˜Cn−1 ≤ 1

8nCn−1 < Cn−1. Therefore

M1Q+M2Q+Q2 < (22n+1 + 22n + 1)Cn−1

(

˜Cn−1

8n

)

< 3(22n+1)Cn−1

(

˜Cn−1

8n

)

=
6

2n
Cn−1

˜Cn−1

<
1

2
Cn−1

˜Cn−1.

By Theorem 1.2,

M1M2 ≤
∑

1≤k1<⌊n

2
⌋,

2≤k2<⌊n

2
⌋

(

n− 1

k1 − 1

)(

n− 1

k2 − 1

)

˜Cn−k1

˜Cn−k2
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=





∑

1≤k<⌊n

2
⌋

(

n− 1

k − 1

)

˜Cn−k









∑

2≤k<⌊n

2
⌋

(

n− 1

k − 1

)

˜Cn−k



 .

By equation (3),

∑

1≤k<⌊n

2
⌋

(

n− 1

k − 1

)

˜Cn−k ≤ Cn−1,

∑

2≤k<⌊n

2
⌋

(

n− 1

k − 1

)

˜Cn−k ≤ Cn−1 − ˜Cn−1.

Hence, M1M2 ≤ (Cn−1 − ˜Cn−1)Cn−1, and

|A1||A2| < C2
n−1 − ˜Cn−1Cn−1 +

1

2
(Cn−1) ˜Cn−1

< C2
n−1. �

Lemma 4.3. There exists a constant n0, such that for all n ≥ n0, if (A1,A2) ∈
I(n, 1), then

|A1||A2| ≤ C2
n−1.

Moreover, equality holds if and only if A1 = A2 and A1
∼= D0(1).

Proof. Note that (D0(1),D0(1)) ∈ I(n, 1) and |D0(1)| = Cn−1. Let (A1,A2) ∈
I(n, 1) such that |A1||A2| is maximum. Then |A1||A2| ≥ C2

n−1. Repeatedly
apply the splitting operations until we obtain compressed families A∗

1 and A∗
2

with |A∗
1| = |A1|, |A∗

2| = |A2|, and (A∗
1,A∗

2) ∈ I(n, t) (Lemma 2.5). By Lemma
2.6, γ(A∗

1) and γ(A∗
2) are cross intersecting. If (γ(A1), γ(A2)) is non-trivial,

then by Lemma 3.3, |A1||A2| = |A∗
1||A∗

2| < C2
n−1, a contradiction. Hence,

(γ(A1), γ(A2)) is trivial.
Let x ∈ [n] be such that x ∈ γ(A) for all A ∈ A∗

1 and A ∈ A∗
2. Let σ

be a permutation of [n] with σ(x) = 1. Then σ(A∗
i ) ⊆ D0(1) for i = 1, 2.

This implies that |A∗
i | = |σ(A∗

i )| ≤ |D0(1)| = Cn−1. Since C2
n−1 ≤ |A1||A2| =

|A∗
1||A∗

2| ≤ C2
n−1, we must have σ(A∗

i ) = D0(1). By Lemma 2.9, we conclude
that A1 = A2 and A1

∼= D0(1). �

Proof of Theorem 1.6. Note that if A1,A2, . . . ,Ar are restricted r-cross in-
tersecting, then for any i, j with i 6= j, we have Ai,Aj are restricted cross-
intersecting. By Lemma 4.3,

(6) |Ai||Aj | ≤ C2
n−1.

Therefore,
(

r
∏

i=1

|Ai|
)r−1

=
∏

1≤i<j≤r

|Ai||Aj |

≤
∏

1≤i<j≤r

C2
n−1
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= C
r(r−1)
n−1 .

This proves the first part of Theorem 1.6.
Suppose equality holds. Then in equation (6), we must have

|Ai||Aj | = C2
n−1.

By Lemma 4.3, Ai = Aj and Ai
∼= D0(1). This completes the proof of Theorem

1.6. �
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A 118 (2011), no. 5, 1575–1587.

[36] J. Wang and H. Zhang, Cross-intersecting families and primitivity of symmetric sys-

tems, J. Combin. Theory Ser. A 118 (2011), no. 2, 455–462.
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