Acknowledgement
The authors would like to thank their advisors Juncheol Pyo andWayne Rossman. We also warmly thank the referees for their careful reading of our paper and giving us valuable comments. The first author was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. NRF-2019R1C1C1004819 and No. NRF-2022R1H1A2091877). The second author was supported by a grantsinaid from JSPS Research Fellowships for Young Scientist (No. 21K13799).
References
- A. Cayley, On a special surface of minimum area, Quart. J. P. Appl. Math. 14 (1877), 190-196.
- N. Ejiri, S. Fujimori, and T. Shoda, A remark on limits of triply periodic minimal surfaces of genus 3, Topology Appl. 196 (2015), part B, 880-903. https://doi.org/10.1016/j.topol.2015.05.014
- N. Ejiri, S. Fujimori, and T. Shoda, On limits of triply periodic minimal surfaces, Ann. Mat. Pura Appl. (4) 197 (2018), no. 6, 1739-1748. https://doi.org/10.1007/s10231-018-0746-8
- M. Frechet, Determination des surfaces minima du type a(x)+b(y) = c(z), Rend. Circ. Mat. Palermo (2) 5 (1956), 238-259. https://doi.org/10.1007/BF02849386
- M. Frechet, Determination des surfaces minima du type a(x) + b(y) = c(z). II. Quadratures, Rend. Circ. Mat. Palermo (2) 6 (1957), 5-32. https://doi.org/10.1007/BF02848440
- T. Hasanis and R. Lopez, Classification of separable surfaces with constant Gaussian curvature, Manuscripta Math. 166 (2021), no. 3-4, 403-417. https://doi.org/10.1007/s00229-020-01247-6
- S. Kaya and R. Lopez, Classification of zero mean curvature surfaces of separable type in Lorentz-Minkowski space, Tohoku Math. J. (2) 74 (2022), no. 2, 263-286. https://doi.org/10.2748/tmj.20210120a
- W. Meeks III, The theory of triply periodic minimal surfaces, Indiana Univ. Math. J. 39 (1990), no. 3, 877-936. https://doi.org/10.1512/iumj.1990.39.39043
- J. C. C. Nitsche, Lectures on minimal surfaces. Vol. 1, translated from the German by Jerry M. Feinberg, Cambridge Univ. Press, Cambridge, 1989.
- M. M. Rodriguez, The space of doubly periodic minimal tori with parallel ends: standard examples, Michigan Math. J. 55 (2007), no. 1, 103-122. https://doi.org/10.1307/mmj/1177681987
- H. F. Scherk, Bemerkungen uber die kleinste Flache innerhalb gegebener Grenzen, J. Reine Angew. Math. 13 (1835), 185-208. https://doi.org/10.1515/crll.1835.13.185
- H. A. Schwarz, Gesammelte mathematische Abhandlungen. Band I, II, nachdruck in einem Band der Auflage von 1890, Chelsea, Bronx, NY, 1972.
- V. V. Sergienko and V. G. Tkachev, Doubly periodic maximal surfaces with singularities, Siberian Adv. Math. 12 (2002), no. 1, 77-91.
- J. Weingarten, Ueber die durch eine gleichung von der form x + y + z = 0 darstellbaren minimalflachen, Gott. Nachr. 1887 (1887), 272-275.