DOI QR코드

DOI QR Code

SEPARABLE MINIMAL SURFACES AND THEIR LIMIT BEHAVIOR

  • Daehwan Kim (Department of Mathematics Education Daegu University, School of Mathematics Korea Institute for Advanced Study) ;
  • Yuta Ogata (Department of Mathematics Faculty of Science Kyoto Sangyo University)
  • Received : 2023.09.24
  • Accepted : 2024.02.05
  • Published : 2024.07.01

Abstract

A separable minimal surface is represented by the form of f(x) + g(y) + h(z) = 0, where f, g and h are real-valued functions of x, y and z, respectively. We provide exact equations for separable minimal surfaces with elliptic functions that are singly, doubly and triply periodic minimal surfaces and completely classify all them. In particular, parameters in the separable minimal surfaces change the shape of the surfaces, such as fundamental periods and its limit behavior, within the form f(x) + g(y) + h(z) = 0.

Keywords

Acknowledgement

The authors would like to thank their advisors Juncheol Pyo andWayne Rossman. We also warmly thank the referees for their careful reading of our paper and giving us valuable comments. The first author was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. NRF-2019R1C1C1004819 and No. NRF-2022R1H1A2091877). The second author was supported by a grantsinaid from JSPS Research Fellowships for Young Scientist (No. 21K13799).

References

  1. A. Cayley, On a special surface of minimum area, Quart. J. P. Appl. Math. 14 (1877), 190-196.
  2. N. Ejiri, S. Fujimori, and T. Shoda, A remark on limits of triply periodic minimal surfaces of genus 3, Topology Appl. 196 (2015), part B, 880-903. https://doi.org/10.1016/j.topol.2015.05.014
  3. N. Ejiri, S. Fujimori, and T. Shoda, On limits of triply periodic minimal surfaces, Ann. Mat. Pura Appl. (4) 197 (2018), no. 6, 1739-1748. https://doi.org/10.1007/s10231-018-0746-8
  4. M. Frechet, Determination des surfaces minima du type a(x)+b(y) = c(z), Rend. Circ. Mat. Palermo (2) 5 (1956), 238-259. https://doi.org/10.1007/BF02849386
  5. M. Frechet, Determination des surfaces minima du type a(x) + b(y) = c(z). II. Quadratures, Rend. Circ. Mat. Palermo (2) 6 (1957), 5-32. https://doi.org/10.1007/BF02848440
  6. T. Hasanis and R. Lopez, Classification of separable surfaces with constant Gaussian curvature, Manuscripta Math. 166 (2021), no. 3-4, 403-417. https://doi.org/10.1007/s00229-020-01247-6
  7. S. Kaya and R. Lopez, Classification of zero mean curvature surfaces of separable type in Lorentz-Minkowski space, Tohoku Math. J. (2) 74 (2022), no. 2, 263-286. https://doi.org/10.2748/tmj.20210120a
  8. W. Meeks III, The theory of triply periodic minimal surfaces, Indiana Univ. Math. J. 39 (1990), no. 3, 877-936. https://doi.org/10.1512/iumj.1990.39.39043
  9. J. C. C. Nitsche, Lectures on minimal surfaces. Vol. 1, translated from the German by Jerry M. Feinberg, Cambridge Univ. Press, Cambridge, 1989.
  10. M. M. Rodriguez, The space of doubly periodic minimal tori with parallel ends: standard examples, Michigan Math. J. 55 (2007), no. 1, 103-122. https://doi.org/10.1307/mmj/1177681987
  11. H. F. Scherk, Bemerkungen uber die kleinste Flache innerhalb gegebener Grenzen, J. Reine Angew. Math. 13 (1835), 185-208. https://doi.org/10.1515/crll.1835.13.185
  12. H. A. Schwarz, Gesammelte mathematische Abhandlungen. Band I, II, nachdruck in einem Band der Auflage von 1890, Chelsea, Bronx, NY, 1972.
  13. V. V. Sergienko and V. G. Tkachev, Doubly periodic maximal surfaces with singularities, Siberian Adv. Math. 12 (2002), no. 1, 77-91.
  14. J. Weingarten, Ueber die durch eine gleichung von der form x + y + z = 0 darstellbaren minimalflachen, Gott. Nachr. 1887 (1887), 272-275.