• Title/Summary/Keyword: 포아송 분포

Search Result 260, Processing Time 0.029 seconds

Outage Probability Analysis of Macro Diversity Combining Based on Stochastic Geometry (매크로 다이버시티 결합의 확률 기하 이론 기반 Outage 확률 분석)

  • Zihan, Ewaldo;Choi, Kae-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.187-194
    • /
    • 2014
  • In this paper, we analyze the outage probability of macro diversity combining in cellular networks in consideration of aggregate interference from other mobile stations (MSs). Different from existing works analyzing the outage probability of macro diversity combining, we focus on a diversity gain attained by selecting a base station (BS) subject to relatively low aggregate interference. In our model, MSs are randomly located according to a Poisson point process. The outage probability is analyzed by approximating the multivariate distribution of aggregate interferences on multiple BSs by a multivariate lognormal distribution.

Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET According to Channel Doping Concentration (채널도핑강도에 대한 이중게이트 MOSFET의 DIBL분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.579-584
    • /
    • 2012
  • In this paper, drain induced barrier lowering(DIBL) has been analyzed as one of short channel effects occurred in double gate(DG) MOSFET. The DIBL is very important short channel effects as phenomenon that barrier height becomes lower since drain voltage influences on potential barrier of source in short channel. The analytical potential distribution of Poisson equation, validated in previous papers, has been used to analyze DIBL. Since Gaussian function been used as carrier distribution for solving Poisson's equation to obtain analytical solution of potential distribution, we expect our results using this model agree with experimental results. The change of DIBL has been investigated for device parameters such as channel thickness, oxide thickness and channel doping concentration.

Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET According to Channel Doping Intensity (채널도핑강도에 대한 DGMOSFET의 DIBL분석)

  • Jung, Hak-Kee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.888-891
    • /
    • 2011
  • In this paper, drain induced barrier lowering(DIBL) has been analyzed as one of short channel effects occurred in double gate(DG) MOSFET. The DIBL is very important short channel effects as phenomenon that barrier height becomes lower since drain voltage influences on potential barrier of source in short channel. The analytical potential distribution of Poisson equation, validated in previous papers, has been used to analyze DIBL. Since Gaussian function been used as carrier distribution for solving Poisson's equation to obtain analytical solution of potential distribution, we expect our results using this model agree with experimental results. The change of DIBL has been investigated for device parameters such as channel thickness, oxide thickness and channel doping intensity.

  • PDF

Analysis of Threshold Voltage Characteristics for FinFET Using Three Dimension Poisson's Equation (3차원 포아송방정식을 이용한 FinFET의 문턱전압특성분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2373-2377
    • /
    • 2009
  • In this paper, the threshold voltage characteristics have been analyzed using three dimensional Poisson's equation for FinFET. The FinFET is extensively been studing since it can reduce the short channel effects as the nano device. We have presented the short channel effects such as subthreshold swing and threshold voltage for PinFET, using the analytical three dimensional Poisson's equation. We have analyzed for channel length, thickness and width to consider the structural characteristics for FinFET. Using this model, the subthreshold swing and threshold voltage have been analyzed for FinFET since the potential and transport model of this analytical three dimensional Poisson's equation is verified as comparing with those of the numerical three dimensional Poisson's equation.

Movement of Conduction Path for Electron Distribution in Channel of Double Gate MOSFET (DGMOSFET에서 채널내 전자분포에 따른 전도중심의 이동)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.805-811
    • /
    • 2012
  • In this paper, movement of conduction path has been analyzed for electron distribution in the channel of double gate(DG) MOSFET. The analytical potential distribution model of Poisson equation, validated in previous researches, has been used to analyze transport characteristics. DGMOSFETs have the adventage to be able to reduce short channel effects due to improvement for controllability of current by two gate voltages. Since short channel effects have been occurred in subthreshold region including threshold region, the analysis of transport characteristics in subthreshold region is very important. Also transport characteristics have been influenced on the deviation of electron distribution and conduction path. In this study, the influence of electron distribution on conduction path has been analyzed according to intensity and distribution of doping and channel dimension.

Dependence of Subthreshold Current for Channel Structure and Doping Distribution of Double Gate MOSFET (DGMOSFET의 채널구조 및 도핑분포에 따른 문턱전압이하 전류의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, dependence of subthreshold current has been analyzed for doping distribution and channel structure of double gate(DG) MOSFET. The charge distribution of Gaussian function validated in previous researches has been used to obtain potential distribution in Poisson equation. Since DGMOSFETs have reduced short channel effects with improvement of current controllability by gate voltages, subthreshold characteristics have been enhanced. The control of current in subthreshold region is very important factor related with power consumption for ultra large scaled integration. The deviation of threshold voltage has been qualitatively analyzed using the changes of subthreshold current for gate voltages. Subthreshold current has been influenced by doping distribution and channel dimension. In this study, the influence of channel length and thickness on current has been analyzed according to intensity and distribution of doping.

The Study for NHPP Software Reliability Growth Model based on Exponentiated Exponential Distribution (지수화 지수 분포에 의존한 NHPP 소프트웨어 신뢰성장 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.9-18
    • /
    • 2006
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the exponentiated exponential distribution reliability model, which maked out efficiency substituted for gamma and Weibull model(2 parameter shape illustrated by Gupta and Kundu(2001) Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE, AIC statistics and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using NTDS data set for the sake of proposing shape parameter of the exponentiated exponential distribution was employed. This analysis of failure data compared with the exponentiated exponential distribution model and the existing model (using arithmetic and Laplace trend tests, bias tests) is presented.

  • PDF

Drain Induced Barrier Lowering of Asymmetric Double Gate MOSFET for Channel Doping Profile (비대칭 DGMOSFET의 도핑분포함수에 따른 DIBL)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2643-2648
    • /
    • 2015
  • This paper analyzes the phenomenon of drain induced barrier lowering(DIBL) for doping profiles in channel of asymmetric double gate(DG) MOSFET. The DIBL, the important short channel effect, is described as lowering of source barrier height by drain voltage. The analytical potential distribution is derived from Poisson's equation to analyze the DIBL, and the DIBL is observed according to the change of doping profile to influence on potential distribution. As a results, the DIBL is significantly influenced by projected range and standard projected deviation, the variables of channel doping profiles. The change of DIBL shows greatly in the range of high doping concentration such as $10^{18}/cm^3$. The DIBL increases with decrease of channel length and increase of channel thickness, and with increase of bottom gate voltage and top/bottom gate oxide film thickness.

Analysis of Channel Doping Profile Dependent Threshold Voltage Characteristics for Double Gate MOSFET (이중게이트 MOSFET의 채널도핑분포의 형태에 따른 문턱전압특성분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.664-667
    • /
    • 2011
  • In this paper, threshold voltage characteristics have been analyzed as one of short channel effects occurred in double gate(DG)MOSFET to be next-generation devices. The Gaussian function to be nearly experimental distribution has been used as carrier distribution to solve Poisson's equation, and threshold voltage has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and threshold voltage has been obtained from this model. Since threshold voltage has been defined as gate voltage when surface potential is twice of Fermi potential, threshold voltage has been derived from analytical model of surface potential. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the threshold voltage characteristics have been considered according to the doping profile of DGMOSFET.

  • PDF

NHPP Software Reliability Model based on Generalized Gamma Distribution (일반화 감마 분포를 이용한 NHPP 소프트웨어 신뢰도 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.27-36
    • /
    • 2005
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates Per fault. This Paper Proposes reliability model using the generalized gamma distribution, which can capture the monotonic increasing(or monotonic decreasing) nature of the failure occurrence rate per fault. Equations to estimate the parameters of the generalized gamma finite failure NHPP model based on failure data collected in the form of interfailure times are developed. For the sake of proposing shape parameter of the generalized gamma distribution, used to the special pattern. Data set, where the underlying failure process could not be adequately described by the knowing models, which motivated the development of the gamma or Weibull model. Analysis of failure data set for the generalized gamma modell, using arithmetic and Laplace trend tests . goodness-of-fit test, bias tests is presented.

  • PDF