• Title/Summary/Keyword: 탐구사고력

Search Result 136, Processing Time 0.021 seconds

Validity Analysis on Writing Directions and Content Development of Texts for 'Invention and Problem Solving' ('발명과 문제해결'의 집필 방향과 교재 내용에 대한 타당도 분석)

  • Lee, Byung-Wook;Choi, Yu-Hyun;Kim, Taehoon;Kang, Kyoung-Kyoon
    • 대한공업교육학회지
    • /
    • v.34 no.1
    • /
    • pp.155-170
    • /
    • 2009
  • This study aims at examining text contents and its writing directions and analyzing their validity to develop text books of "invention and problem solving", which will be used for advanced courses of specialized high school of invention and patents. To develop text book contents and writing direction, literature research and professional association meetings were performed and to verify validity on developed text book contents and writing direction, survey research was performed. The subjects of survey research to verify validity consist of seventy five teachers who participated in the training course for invention leaders hosted by International Intellectual Property Training Institute (IIPTI) of Korean Intellectual Property Office (KIPO). To examine validity on text writing directions, each area of the text, themes, and modules, questionnaires that consist of multiple choice questions, and open questions that participants can describe their opinions were developed. Text book writing plans are included in the questionnaires to help the understanding on text book contents. The conclusions drawn from results of validity analysis are as follows: First, each theme and modules of 'invention and problem solving' were properly developed for common text books for the advance course of specialized high school of invention and patents. Second, as for the text book writing direction of 'invention and problem solving', text books emphasize research ability and creative thinking. They were developed to help increase critical thinking, logical thinking and problem solving ability.

Relationships between Piagetian Congnitive Modes and Integrated Science Process Skills for High School Students (고교생의 논리적사고력과 과학탐구 기능 사이의 상관관계에 관한 연구)

  • Lim, Cheong-Hwan;Jeong, Jin-Woo
    • Journal of The Korean Association For Science Education
    • /
    • v.11 no.2
    • /
    • pp.23-30
    • /
    • 1991
  • The purpose of this study is to investigate the interrelationships on integrated science process skills and Piagetian cognitive modes for high school students according to the different cognitive reasoning levels. About 509 high school students were randomly selected for the samples of this study. They were identified as concrete, transitional and formal operational stage with the scores of GALT(Group Assessment of Logical Thinking) developed by Roadrangka, Yeaney and Padilla(1982), and TIPS II(Test of Integrated Process Skills) developed by Burns, Wise and Okey(1983). The result of this study were showed that about 11.8% of the samples were in the concrete operational stage and about 24.4% of the samples were in the transitional stage, while about 63.8% of them were in the formal operational stage. It was also found that the achivement scores of the science process skills increase in accordance with the cognitive reasoning levels. The value of the correlation coefficient between science process skills and cognitive reasoning abilities was 0.49, which was significant at the 0.05 level. This finding seems to support previous research that the student's cognitive reasoning abilities appeared to have influenced student's scores of the science process skills No differences to the logical reasoning ability between male and female students according to each cognitive level were found except formal operational stage.

  • PDF

The High School Students' Problem Solving Patterns and Their Features in Scientific Inquiry (고등학생의 탐구 사고력 문제 해결 과정에 나타난 유형과 특징)

  • Kim, Ik-Gyun;Hwang, Yu-Jeong
    • Journal of The Korean Association For Science Education
    • /
    • v.13 no.2
    • /
    • pp.152-162
    • /
    • 1993
  • The high school students' problem solving patterns and their features in scientific inquiry, especially on controlling variables and stating hypothesis have been investigated. The 8 problems on controlling variables and stating hypothesis were selected out of the scientific inquiry area in the experimental tryout of Aptitude Assessment for College Education, and had been used to find the patterns and their features. The results of findings are as follows: There were seven patterns in the process of solving problems. Five of seven patterns were found in right answers and four patterns in wrong answers. Two patterns were found in both right and wrong answers. Some students could solve the problems even though they did not understand the elements of the scientific inquiry, controlling variables and stating hypothesis. The false application of physics concepts, misunderstanding about the elements of the scientific inquiry and using unrelated experience and conjectures were the features of students' wrong answers. On the other hand, the right application of physics concepts, understanding and applying the elements right, infering answers from the tables and figures on statements of suggested problems were the features of right answers. The further studies on this kind may helpful to find the higher mental abilities related to scientific inquiry and to develop tools for testing students' scientific inquiry thinking skills.

  • PDF

Comparison of Problem Finding Ability, Creative Thinking Ability, Creative Tendency, Science Process Skill between the Scientifically Gifted and General Students (과학영재 학생과 일반 학생의 문제 발견력, 창의적 사고력, 창의적 성향, 과학 탐구 능력 비교)

  • Go, Yu-Mi;Yeo, Sang-Ihn
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.4
    • /
    • pp.624-633
    • /
    • 2011
  • The purpose of this study was to compare problem finding ability, creative thinking ability, creative tendency, and science process skill between the scientifically gifted students and the general students. For this study, problem finding ability test, integrating creativity test, and science process skill test were conducted to the elementary gifted students (n=95) in science and the general students (n=149) at the same school district. The results of this study were as follows: The mean scores of problem finding, creative thinking, creative tendency, and science process skill of the gifted students were statistically higher than the general students. The problem finding ability had partially weak correlation with sub-domains of the creative thinking ability, creative tendency, and science process skill. Findings suggest that there are needs of further study about factors affecting problem finding and considering the degree of structure of problem situation.

Mathematical Study on the Removal of the Go Stones (바둑돌 줍기에 관한 수학적 연구)

  • Lee, Gwang Yeon;Cho, Seong Hoon;Yang, Seung Bum
    • Journal for History of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.101-119
    • /
    • 2012
  • The removal of the Go Stones is a game that anyone can play through simple rules. It is not only an interesting game but also a mathematical game that requires comprehensive knowledge of several mathematical theories. Through analyzing the rules and theories of this game, students can get a new mathematical perspective and recognize something that they didn't realize as important before. Furthermore, this game is given to students as a mathematical problem unconsciously. This helps them get a mathematical approach to understanding the actual concept of the problem as well as the basic principle of the problem.

Analysis of Teachers' Perceptions on the Subject Competencies of Integrated Science (통합과학 교과 역량에 대한 교사들의 인식 분석)

  • Ahn, Yumin;Byun, Taejin
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.2
    • /
    • pp.97-111
    • /
    • 2020
  • In the 2015 revised curriculum, 'Integrated Science' was established to increase convergent thinking and designated as a common subject for all students to learn, regardless of career. In addition, the 2015 revised curriculum introduced 'competence' as a distinctive feature from the previous curriculum. In the 2015 revised curriculum, competencies are divided into core competencies of cross-curricular character and subject competencies based on academic knowledge and skills of the subject. The science curriculum contains five subject competencies: scientific thinking, scientific inquiry, scientific problem solving, scientific communication, scientific participation and life-long learning. However, the description of competencies in curriculum documents is insufficient, and experts' perceptions of competencies are not uniform. Therefore, this study examines the perceptions of science subjects in science high school teachers by deciding that comprehension of competencies should be preceded in order for competency-based education to be properly applied to school sites. First, we analyzed the relationship between achievement standards and subject competencies of integrated science through the operation of an expert working group with a high understanding of the integrated science achievement standards. Next, 31 high school science teachers examined the perception of the five subject competencies through a descriptive questionnaire. The semantic network analysis has been utilized to analyze the teachers' responses. The results of the analysis showed that the three curriculum competencies of scientific inquiry, scientific communication, scientific participation and life-long learning ability are similar to the definitions of teachers and curriculum documents, but in the case of scientific thinking and scientific problem solving, there are some gaps in perception and definition in curriculum documents. In addition, the results of the comprehensive analysis of teachers' perceptions on the five competencies show that the five curriculum competencies are more relevant than mutually exclusive or independent.

Analysis of Changes in the Learning Environments of Middle School Science Classes (중학교 과학 수업 학습 환경에 대한 변화 분석)

  • Lee, Jaebong
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.5
    • /
    • pp.717-727
    • /
    • 2016
  • Using TIMSS survey data, we analyzed whether there were any significant changes in the learning environment of middle school science classes over the last 10 years. Our study selected questions from teachers and school principals' questionnaires and divided them by category: science class, teacher professional development, and school environment. The science class components were subdivided into three categories: science learning activities, evaluation, and homework. Within teacher professional development, the sub-categories included teacher training, collaboration to improve teaching, and teacher evaluation. School environment subdivided into two aspects, these being school characteristics and school system. Our research confirmed that there has been a positive change overall in learning environments. However, most classes are teacher-conducted and also teacher-oriented; the proportion of science investigation activities has declined compared against the prior ten years. Our study show that students do not engage in a range of inquiry-related activities. The questions on tests and examinations involve mostly knowledge application and understanding, although recent methods of evaluation show improvement. As for the science teachers, they participate in many professional development programs but focus on science content, science curriculum, and pedagogy. In addition, teachers do not have many opportunities to participate in the training to integrate information technology into science, science assessment, or improving students' critical thinking or inquiry skills. The teachers are satisfied with their profession, and the shortage of science resources does not seem to affect instruction.

Assessment Study on Educational Programs for the Gifted Students in Mathematics (영재학급에서의 수학영재프로그램 평가에 관한 연구)

  • Kim, Jung-Hyun;Whang, Woo-Hyung
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.235-257
    • /
    • 2010
  • Contemporary belief is that the creative talented can create new knowledge and lead national development, so lots of countries in the world have interest in Gifted Education. As we well know, U.S.A., England, Russia, Germany, Australia, Israel, and Singapore enforce related laws in Gifted Education to offer Gifted Classes, and our government has also created an Improvement Act in January, 2000 and Enforcement Ordinance for Gifted Improvement Act was also announced in April, 2002. Through this initiation Gifted Education can be possible. Enforcement Ordinance was revised in October, 2008. The main purpose of this revision was to expand the opportunity of Gifted Education to students with special education needs. One of these programs is, the opportunity of Gifted Education to be offered to lots of the Gifted by establishing Special Classes at each school. Also, it is important that the quality of Gifted Education should be combined with the expansion of opportunity for the Gifted. Social opinion is that it will be reckless only to expand the opportunity for the Gifted Education, therefore, assessment on the Teaching and Learning Program for the Gifted is indispensible. In this study, 3 middle schools were selected for the Teaching and Learning Programs in mathematics. Each 1st Grade was reviewed and analyzed through comparative tables between Regular and Gifted Education Programs. Also reviewed was the content of what should be taught, and programs were evaluated on assessment standards which were revised and modified from the present teaching and learning programs in mathematics. Below, research issues were set up to assess the formation of content areas and appropriateness for Teaching and Learning Programs for the Gifted in mathematics. A. Is the formation of special class content areas complying with the 7th national curriculum? 1. Which content areas of regular curriculum is applied in this program? 2. Among Enrichment and Selection in Curriculum for the Gifted, which one is applied in this programs? 3. Are the content areas organized and performed properly? B. Are the Programs for the Gifted appropriate? 1. Are the Educational goals of the Programs aligned with that of Gifted Education in mathematics? 2. Does the content of each program reflect characteristics of mathematical Gifted students and express their mathematical talents? 3. Are Teaching and Learning models and methods diverse enough to express their talents? 4. Can the assessment on each program reflect the Learning goals and content, and enhance Gifted students' thinking ability? The conclusions are as follows: First, the best contents to be taught to the mathematical Gifted were found to be the Numeration, Arithmetic, Geometry, Measurement, Probability, Statistics, Letter and Expression. Also, Enrichment area and Selection area within the curriculum for the Gifted were offered in many ways so that their Giftedness could be fully enhanced. Second, the educational goals of Teaching and Learning Programs for the mathematical Gifted students were in accordance with the directions of mathematical education and philosophy. Also, it reflected that their research ability was successful in reaching the educational goals of improving creativity, thinking ability, problem-solving ability, all of which are required in the set curriculum. In order to accomplish the goals, visualization, symbolization, phasing and exploring strategies were used effectively. Many different of lecturing types, cooperative learning, discovery learning were applied to accomplish the Teaching and Learning model goals. For Teaching and Learning activities, various strategies and models were used to express the students' talents. These activities included experiments, exploration, application, estimation, guess, discussion (conjecture and refutation) reconsideration and so on. There were no mention to the students about evaluation and paper exams. While the program activities were being performed, educational goals and assessment methods were reflected, that is, products, performance assessment, and portfolio were mainly used rather than just paper assessment.

A Study on the Development of Teaching Materials about Utilizing Counterexmples Focusing on Proposition in High School (고등학교 명제 단원에서 반례 활용에 관한 교수·학습 자료 개발 연구)

  • Oh, Se Hyun;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.30 no.3
    • /
    • pp.393-418
    • /
    • 2016
  • Theory and fundamentals of mathematics consist mostly of proposition form. Activities by research of the proposition which leads to determine the true or false, justify the true propositions and refute with counterexample improve logical reasoning skills of students in emphases on mathematics education. Also, utilizing of counterexamples in school mathematics combines mathematical knowledge through the process of finding a counterexample, help the concept study and increase the critical thinking. These effects have been found through previous research. But many studies say that the learners have difficulty in generating counterexamples for false propositions and materials have not been developed a lot for the counterexample utilizing that can be applied in schools. So, this study analyzed the current textbook and examined the use of counterexamples and developed educational materials for counterexamples that can be applied at schools. That materials consisted of making true & false propositions and students was divided into three groups of academic achievement level. And then this study looked at the change of the students' thinking after counterexample classes. As a study result, in all three groups was showed a positive change in the cognitive domain and affective domain. Especially, in top-level group was mainly showed a positive change in the cognitive domain, in upper-middle group was mainly showed in the cognitive and the affective domain, in the sub-group was mainly found a positive change in the affective domain. Also in this study shows that the class that makes true or false propositions in education of utilizing counterexample, made students understand a given proposition, pay attention to easily overlooked condition, carefully observe symbol sign and change thinking of cognitive domain helping concept learning regardless of academic achievement levels of learners. Also, that class gave positive affect to affective domain that increase interest in the proposition and gain confidence about proposition.

Research on Ways to Improve Science Teaching Methods to Develop Students' Key Competencies (학습자의 핵심역량 개발을 위한 과학과 수업방법 개선 방안)

  • Kwak, Youngsun
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.5
    • /
    • pp.855-865
    • /
    • 2012
  • The goal of this research is to investigate ways to improve science teaching methods to develop students' key competencies. Since the OECD DeSeCo (Definition and Selection of Key Competencies) project, key competencies are redefined as 'what people should know and be able to do in order to lead a successful life in a well-functioning society, which leads many countries to emphasize competency-based curriculum. In this research, we collected and analyzed foreign and domestic classroom cases that have implemented competency-based curriculum in science teaching. Through open-ended interviews with the teachers and principals, we explored ways to improve science teaching methods to develop students' key competencies. In foreign cases, science teachers emphasized students' knowing what KCs to accomplish, activities and student-centered learning, students' group activities and collaboration, and greater curriculum integration among subjects and contexts. Korean science teachers argued that the KCs should be realized through teaching methods and emphasized scientific inquiry learning whereby non-science track students could also benefit from science lessons. Korean science teachers also emphasized links to real-life situations, providing students with various learning experiences that supported students to develop the KCs, and the delivery of an integrated curriculum. In the conclusion section, the difficulties with the implementation of key competencies are discussed.