• Title/Summary/Keyword: 초등 과학 교사

Search Result 874, Processing Time 0.022 seconds

Analysis of the 2015 Revised and 2022 Revised Elementary School Science Achievement Standards Using the TIMSS 2023 Scientific Cognitive Domain Analysis Framework (TIMSS 2023 과학 인지 영역 분석틀을 활용한 2015 개정 및 2022 개정 초등 과학과 성취 기준 분석)

  • Sungchan Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.3
    • /
    • pp.249-262
    • /
    • 2024
  • The purpose of this study is to analyze the achievement standards of the 2015 revision and 2022 revision of the science curriculum using the TIMSS 2023 science cognitive domain analysis framework. The subject of the study is the achievement standards for all elementary school areas in the 2015 and 2022 revised science curriculum. Three field teachers and one elementary science education expert who majored in elementary science education participated in the research analysis. The results of this study are as follows. First, in the 2022 revised movement and energy field, the ratio of the 'knowing' area was about 16% higher than the 2015 revision, and the ratio of the 'reasoning' area also increased by about 5.8%. Second, in the material field, the proportion of TIMSS 2023 cognitive domains was in the order of 'knowing', 'applying', and 'reasoning' regardless of grade group and curriculum revision period. Third, in the field of life sciences, the proportion of TIMSS 2023 cognitive domains differed depending on grade group and curriculum revision period. Fourth, in the Earth and Space field of the 2022 revision, similar to the other three fields, the proportion of the 'Knowing' field increased and while the 'Applying' field decreased. However, in the 2022 revision, the 'reasoning' area in all three other fields increased, but decreased only in the earth and space fields. Fifth, the 2015 revised integrated unit and the 2022 revised science and society field only covered the elements of 'recognizing' and 'presenting examples' in the 'knowing' area, 'making relationships' and 'explaining' in the 'applying' area and 'Synthesize' in the 'reasoning' area. In the 2022 revised elementary school science field, the proportion of the 'knowing' section was 52.5%, the proportion of the 'applying' section was 33.8%, and the proportion of the 'reasoning' section was 13.7%. In conclusion, in the 2022 revised elementary science achievement standards, the ratio of the 'applying' and 'reasoning' areas was low because the reliance on the 'knowing' area was too high.

Development of Elementary School Science Instructional Program for Nurturing Creativity - 1. Survey of the Status in Creativity Education - (창의력 계발을 위한 자연과 교수.학습 자료 개발 -1. 창의력 교육의 실태조사-)

  • Kang, Ho-Kam;Noh, Suk-Goo;Lee, Heui-Soon;Hong, Seok-In;Choi, Sun-Young;Won, Wyong-Jun;Ha, Jung-Won;Kim, Ji-Sun
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.4
    • /
    • pp.542-559
    • /
    • 1999
  • The purpose of this study was to develop the teaching-learning materials for students' creativity in elementary school science class. For this, we asked some questions to both teachers and students: 25-item- questionnaires were given to 122 teachers in charge of 5th graders and 6th graders in elementary schools located in Seoul, Inchon and Kyonggi province, and 20-item-questionnaires to 825 students of 5th grade and 6th grade in the same schools. The results of this study are as follows: most of teachers admitted the need of creativity education, but they taught class mostly with textbook only. The lack of students' divergent thinking and creative scientific activities in science class made it difficult to develop students' creativity. Besides, teaching-learning materials for whole brain learning were not enough. In case that the students did not make experiment in class, they liked VCR tapes or TP materials Students thought that the most effective materials for class are VCR tapes and next were worksheets. Not a few students answer they do hard only interesting experiments. Most of students wanted worksheets including various interesting activities like games, quiz, experiments, drawing, etc.

  • PDF

The Analysis on Patterns of Questions in Elementary School Science Textbooks under the 2007 Revised Curriculum (2007년 개정교육과정에 따른 초등 과학교과서에 제시된 발문의 유형 분석)

  • Choi, Yoon-mi;Lee, Hyeong Cheol
    • Journal of Science Education
    • /
    • v.36 no.1
    • /
    • pp.120-129
    • /
    • 2012
  • The purpose of this study is to provide informations for developing next elementary school science textbooks and educational implications for a spot of science class through analyzing patterns of questions in the elementary school science textbooks under the 2007 revised curriculum. To get a meaningful results, the 2,446 questions extracted by operation definition from 3~6 grade science text books were analyzed by modified analysis frame work based on Blosser's classified system. The findings of this study were as follows: First, among 2,446 questions, the propositional pattern element had the highest rate, 49.2%, the appreciable pattern element had the lowest rate, 1.4%, of all pattern elements. Second, from the results of comparing patterns of questions in each grade's science textbook, as the grade went higher, the rate of the applicable and the divergent pattern element tended to increase, and that of the other elements tended to decrease. Third, as the results of comparing patterns of questions of 4 each field in elementary science textbooks, the energy field questions were the largest in number, followed by the substance field. The rate of the propositional pattern element was the highest of all question elements in common in each field. In the reproductive and the propositional pattern element, the energy and the substance field had a little higher rate than the other fields. On the other hand, in the applicable and the divergent pattern element, the earth and the life field had a little higher rate than the other fields.

  • PDF

Development and Application TEP Activity for the Education of Experimental Apparatus at Elementary School (초등학생의 실험기구 교육을 위한 TEP 활동의 개발 및 적용)

  • Jeon, Soyeon;Park, Jongseok
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.379-388
    • /
    • 2020
  • The purpose of this study are to develop the TEP activity for learning experimental apparatus at elementary school and to test the effects of the TEP activity. This study consists of two steps. First through literature research on the difficulties and needs of experimental apparatus education developed the form that how to educate the experimental apparatus at elementary school. Second, applied the TEP activity and figured out the effects as two aspect(knowledge about experimental apparatus and actual using skill during lesson). This worksheet was applied to 3rd grade students in elementary school about 4 experimental apparatuses(Beaker, Electronic scale, Glass rod, Spatula). The results of this study are as follows: There is no specific time to teach what is and how to use experimental apparatus by regular curriculum. So many students and teachers need method and time to learn them. Also they want to lots of opportunities to use them. With that needs given previously, TEP activity developed by 3 steps. 1. Trigger interest 2. Explore experimental apparatus: learned knowledges about experimental apparatus focused on appearance(name, purpose, directions for use, precautions) 3. Practice experimental apparatus: actual using time to acquire skills. After that did the survey of knowledge and observation of students' behavior during usual class to confirm the effects. According to the results, TEP activity helped the students to improve there awareness of the experimental apparatus and actual using skills.

Developing Sequential ConcepTests for In-service Science Teachers' Training based on Peer Instruction: Focus on 'Principle of Pinhole Camera' (동료 교수법 기반의 과학교사 연수를 위한 단계형 개념검사문항 개발 -바늘구멍 사진기의 원리 학습을 중심으로-)

  • Lee, Ji-Won;Kim, Jong-Won;Kim, Kyu-Hwan;Hwang, Myung-Su;Kim, Jung-Bog
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.2
    • /
    • pp.229-248
    • /
    • 2013
  • The purpose of this study is to develop sequential concept tests (ConcepTest) for teachers' conceptual change on the straight propagation of light through in-service training of science teachers by peer instruction. We revised the ConcepTests for attaining the goal concept by implementing similar training courses for teachers three times and analyzing the results using both Hake gain and verbal protocol. The final form helped most teachers to reach the goal concept. While teachers are solving a given concept problem test, they had shown not only significant cognitive conflict to select one among candidate answers, but also used the concept obtained through the previous problem. The sequential ConcepTests developed in this study can be useful for training elementary and secondary teachers or pre-service teacher education.

Comparative Analysis of Educational Content in the Elementary Material Area: North and South Korea (남북한 초등 물질 영역의 교육 내용 비교 분석)

  • Shin, Sungchan
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.3
    • /
    • pp.433-445
    • /
    • 2024
  • This study aims to compare and analyze the educational contents of the material area in the elementary science curriculums of North and South Korea. The research subjects are materials and motion and energy (partial) areas of the revised science curriculum of South Korea in 2022 and materials around us and science in daily life (partial) areas of the nature and education program of North Korea in 2013. This study compared the elements of the educational content of the material domain between North and South Korea according to the grade. Furthermore, the reflection of the material domain goals of North and South Korea at the international level was analyzed using the evaluation framework of the Trends in International Mathematics and Science Study (TIMSS) 2023 for the material content domains for fourth-grade elementary schools. Four teachers who majored in elementary science education and one expert in science education participated in the analysis. The results are as follows. First, in terms of the properties of matter, the content covered in the curriculum of North and South Korea differed in application period by grade and in the scope and level of content. Second, regarding material change, North Korea did not cover acids and bases but included methods for speeding up dissolution. Third, North Korea reflected the goal of the TIMSS 2023 properties of materials more highly than South Korea. Fourth, similar to the results for the analysis on the properties of materials, North Korea reflected the goal of the TIMSS 2023 for changes of materials more highly than did South Korea. In conclusion, the elements and timing of application of the material contents differed between North and South Korea, and the degree of reflection of goals at the international level was found to be higher for North Korea. In the future, this study hopes that cooperation and research on the development of integrated science and curriculum will occur along with the revitalization of educational exchange between North and South Korea from the perspective of the preparation for unification beyond the ideological conflict between them.

Investigation of Scientific Terms in Physics Units of Middle School Science Textbooks (중학교 과학 교과서 물리 단원에 수록된 과학 전문 용어 조사)

  • Yun, Eun-Jeong;Park, Yune-Bae
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.8
    • /
    • pp.1175-1185
    • /
    • 2011
  • Language skills in science education seem to have a great impact on student achievement. Most of the language skills affecting students' science learning can be accounted for an understanding of scientific terms. The ultimate goal of this study is selecting and grading the scientific terms for science education. As a basic research, we investigated scientific terms contained in science textbooks, because they are the most basic and selected terminologies. As a result of investigation of scientific terms in physics units of middle school science textbooks, we made a list of 556 scientific terms by grade level. This includes 249 words for grade 7, 170 words for grade 8, and 137 words for grade 9.

Development and Validation of Distributed Cognition Theory Based Instructional Strategy in Science Class Using Technology (테크놀로지 활용 과학 수업에서 분산인지 이론 기반 수업 전략의 개발 및 타당화)

  • Ja-Heon Noh;Jun-Ho Son;Jong-Hee Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.17 no.1
    • /
    • pp.1-19
    • /
    • 2024
  • This study is a design and development study that developed instructional strategies based on distributed cognitive theory for science classes using technology according to procedures that ensured reliability and validity. To develop instructional strategies, development study and validation study were conducted according to design and development research methodology procedures. In the development study, an initial instructional strategy was developed through prior literature review and prior expert review. In the validation study, the instructional strategy was validated using internal validation (expert validation, usability evaluation) and external validation (field application evaluation) methods, and the final instructional strategy was developed. The final instructional strategy consisted of 3 instructional principles, 9 instructional strategies, and 38 detailed guidelines. Through this study, the researcher suggested the suitability of instructional strategies for science classes using technology, the usefulness of blocks and teaching and learning processes, the possibility of using technology as a cognitive tool, the need for teachers' efforts to cultivate teaching capabilities using technology, and the needs lesson plan that takes into account conditions affecting the application of instructional strategies.

The Relationship Analysis of the Korean Science Curriculum with the Chemistry Domains of the 8th Grade TIMSS 2019 (TIMSS 2019의 8학년 화학 영역과 우리나라 과학 교육과정의 비교 분석)

  • Kim, Hyun-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.371-378
    • /
    • 2020
  • The purpose of this study is to analyze the relationship between the eight topics in TIMSS 2019 8th grade chemistry domains and the Korea 2009 Revised Science Curriculum and the 2015 Revised Science Curriculum. For this purpose, four elementary and four secondary teachers participated in physics, chemistry, biology and earth science majors, and two science education experts participated in analyzing in which grades the content elements of the TIMSS 2019 science framework are covered in the Korean science curriculum. The study also analyzed whether the content of the Korean science curriculum matches the 246 items of 8th grade in the TIMSS 2019 assessment and reflects in which grades the eight topics are covered. The results of this study are as follows. First, among the TIMSS 2019 evaluation topics, topics not covered at all in the Korean middle school curriculum were periodic table, matter and energy in chemical reactions, the role of electrons in chemical bonds. Second, the topic of "the periodic table as an organizing principle for the known elements" needs to be introduced in the Korean middle school curriculum, and topics such as "familiar exothermic and endothermic reactions" and "factors affecting the reaction rates" need to be discussed in consideration of the flow of international curricula. Third, the next science curriculum should be structured so that the sequence of chemistry contents and scope, especially core concepts to be included in the elementary, secondary, and higher education curriculum is linked to continuity.

The Development of STEAM Project Learning Program for Creative Problem-solving of the Science Gifted in Elementary School (초등과학영재의 창의적 문제해결력 향상을 위한 융합인재교육(STEAM) 프로그램 개발)

  • Kang, Ho-Kam;Kim, Tae-Hoon
    • Journal of Gifted/Talented Education
    • /
    • v.24 no.6
    • /
    • pp.1025-1038
    • /
    • 2014
  • The purpose of this study the creative problem-solving of gifted children for elementary school science in order to improve and develop learning programs and STEAM projects by applying that effect would be to provide. To develop this STEAM program, we utilized the steps of the Project Learning method and the KOrea Foundation for the Advancement of science and Creativity(KOFAC) proposed STEAM program, learning the principles and criteria in configuration, the methodology. In order to verify the effectiveness of the developed STEAM program Elementary Science for gifted students with creative problemsolving Questionnaire were used. The program was developed a total of 18 classes, consists of first project to create a solar car, second project to create elastic car. The primary project was selected as one of the topics with the students and selected topics related to previous activities in accordance with articles examining the actual quest, consultation, representation activities in class and finishing with the deliverables and evaluation consisted of 12 classes. The second project is the first project based on a given problem to generate a deliverable by outlining a solution which consists of 6 classes. All of this project was composed by teachers and students to select a common topic on the subject of themselves through a process of problematization, the student-led science, technology, engineering and arts of the area so that the content can be made convergence. The results of the study indicate that this developed STEAM program has a positive effection creative problem solving in a gifted students.