Browse > Article
http://dx.doi.org/10.14697/jkase.2013.33.2.229

Developing Sequential ConcepTests for In-service Science Teachers' Training based on Peer Instruction: Focus on 'Principle of Pinhole Camera'  

Lee, Ji-Won (Korea National University of Education)
Kim, Jong-Won (Korea National University of Education)
Kim, Kyu-Hwan (Korea National University of Education)
Hwang, Myung-Su (Korea National University of Education)
Kim, Jung-Bog (Korea National University of Education)
Publication Information
Journal of The Korean Association For Science Education / v.33, no.2, 2013 , pp. 229-248 More about this Journal
Abstract
The purpose of this study is to develop sequential concept tests (ConcepTest) for teachers' conceptual change on the straight propagation of light through in-service training of science teachers by peer instruction. We revised the ConcepTests for attaining the goal concept by implementing similar training courses for teachers three times and analyzing the results using both Hake gain and verbal protocol. The final form helped most teachers to reach the goal concept. While teachers are solving a given concept problem test, they had shown not only significant cognitive conflict to select one among candidate answers, but also used the concept obtained through the previous problem. The sequential ConcepTests developed in this study can be useful for training elementary and secondary teachers or pre-service teacher education.
Keywords
in-service teachers training; peer instruction; conceptests; pinhole camera; straight propagation of light;
Citations & Related Records
연도 인용수 순위
  • Reference
1 교육인적자원부 (2005). 초등학교 교사용 지도서 과학 5-1. 서울: 대한교과서주식회사.
2 곽영순 (2009). 교실 수업에서 초임 과학교사의 교과내용지식이 내용교수지식에 주는 영향에 대한 연구. 한국과학교육학회지, 29(6), 611-625.
3 김규환, 김중복 (2011). 빛의 직진 개념 지도를 위한 탐구 학습모듈의 개발 및 적용. 과학교육연구지, 35(2),173-192.
4 김규환 (2012). 초등 과학수업에서 주제에 따른 Peer Instruction의 효과. 한국교원대학교 대학원 박사학위논문.
5 김종원, 김규환, 이지원, 황명수, 김중복 (2012). 과학교사 연수에서의 동료 교수법의 효과 및 교사의 인식. 과학교육연구지, 36(1), 84-93
6 김중복, 김현아, 김수경 (2006). 과학교사를 위한 빛과파동. 서울: 홍릉과학출판사.
7 백성혜, 정연경(2009).' 빛과상'에대한초등교사들의 이해와 학습 내용에 대한 인식 변화에 대한 사례 연구.초등과학교육, 28(3), 245-262.
8 이건호 (1999). 빛에 대한 초등학교 교사들의 개념. 한국교원대학교 대학원 석사학위논문.
9 이은희(2011).' Peer Instruction'을통한과학교사의자기 개념 변화. 한국교원대학교 대학원 석사학위 논문.
10 이재봉, 남경운, 손정우, 이성묵 (2004). 광선추적과스펙트럼에 대한 교사와 중학생의 개념 유형 분석. 한국과학교육학회지, 24(6), 1189-1205.
11 이희진 (2011). Peer Instruction을 통한 초등학교 6학년 학생의 과학개념변화. 한국교원대학교 교육대학원석사학위 논문.
12 정재훈, 김영신 (2010). 과학 실험 연수에 대한 초등교사들의 기대와 실태 분석. 초등과학교육, 29(3), 316-325.
13 조희형, 고영자 (2008). 과학교사 교수내용지식(PCK)의 재구성과 적용 방법. 한국과학교육학회지, 28(6), 618-632.
14 Chan, C., Burtis, J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, 15(1), 1-40.   DOI   ScienceOn
15 Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121-152.   DOI   ScienceOn
16 Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students'preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1257.   DOI   ScienceOn
17 Clement, J. (2008). The role of explanatory models in teaching for conceptual change. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change. (pp. 417-451). NewYork: Routledge.
18 Cortright, R. N., Collins, H. L., & DiCarlo, S. E. (2005). Peer instruction enhanced meaningful learning: Ablilty to solve novel problems. Advanced Physiology Education, 29, 107-111.   DOI   ScienceOn
19 Crouch, C. H., & Mazur, E. (2001). Peer instruction: Ten years of experience and results. American Journal of Physics, 69(9), 970-977.   DOI   ScienceOn
20 Crouch, C. H. (1998). Peer instruction: An interactive approach for large lecture lasses. Optics & Photonics News, 9(9), 37-41.
21 Crouch, C. H., Watkins, J., Fagen, A., & Mazur, E. (2007). Peer instruction: Engaging students one-on one, all at once. Research-Based Reform of University Physics, 1, 1-55.
22 Ding, L., Reay, N. W., Lee, A., & Bao, L. (2009). Are we asking the right questions? Validating clicker question sequences by student interviews. American Journal of Physics, 77(7), 643-650.   DOI   ScienceOn
23 Fagen, A. P., Crouch, C. H., & Mazur, E. (2002). Peer instruction: Results from a range of classrooms. Physics Teacher, 40, 206-209.   DOI   ScienceOn
24 Feher, E., & Rice, K. (1988). Shadows and anti-images: Children's conceptions of light and vision. II. Science Education, 72(5), 637-649.   DOI
25 Galili, I., & Hazan, A. (2000). Learners'knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education, 22(1), 57-88.   DOI
26 Hake, R. R. (1998). Interactive-engagement vs traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64-74.   DOI   ScienceOn
27 Hansen, J. B., & Feldhusen, J. F. (1994). Comparison of trained and untrained teachers of gifted students. Gifted Child Quarterly, 38(3), 115-121.   DOI   ScienceOn
28 Hecht, E. (2002). Optics, 4/E. New York: Wesley Longman.
29 Lasry, N., Watkins, J., & Mazur, E. (2008). Peer instruction: From Harvard to the two-year college. American Journal of Physics, 76(11), 1066-1069.   DOI   ScienceOn
30 Lee, A., Ding, L., Reay, N. W., & Bao, L. (2011). Singleconcept clicker question sequences. The Physics Teacher, 49, 385-389.   DOI   ScienceOn
31 McDermott, L. C. & Shaffer, P. S. (2002). Tutorial in introductory physics, 1/E. Prentice Hall.
32 Limo、n, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11, 357-380.   DOI   ScienceOn
33 Lorenzo, M., Crouch, C., & Mazur, E. (2006). Reducing the gender gap in the physics classroom. American Journal of Physics, 74(2), 118-122.   DOI   ScienceOn
34 Mazur, E. (1997). Peer Instruction: A user's manual. New Jersey: Prentice Hall.
35 Nicol, D. J., & Boyle, J. T. (2003). Peer instruction versus class-wide discussion in large classes: A comparison of two interaction methods in the wired classroom. Studies in Higher Education, 28(4), 457-473.   DOI   ScienceOn
36 Posner, G. J., Strike, K. A., Hewson, P. W., & Getzog. W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.   DOI
37 Rao, S. P. & Dicarlo, S. E. (2000). Peer instruction improves performance on quizzes. Advanced Physiology Education, 24, 51-55.
38 Rice, K., & Feher, E. (1987). Pinholes and images: children's conceptions of light and vision. I. Science Education, 71(4), 629-639.   DOI
39 She, H. (2002). Concepts of a higher hierarchical level require more dual situated learning events for conceptual change: A study of air pressure and buoyancy . International Journal of Science Education, 24(9), 981-996.   DOI
40 Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching, Educational Researcher, 15(2), 4-14.
41 Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform, Harvard Educational Review, 57(1), 1-22.
42 Turpen, C., & Finkeltein, N. (2009). Not all interactive engagement is the same: Variations in physics professors' implementation of peer instruction. Physical Review Special Topic Physics Education Research, 5(2), 020101-1-18.   DOI
43 Wosilait, K., Heron, P. L., Shaffer, P. S., & McDermott, L. C. (1998). Development and assessment of a researchbased tutorial on light and shadow. American Journal of Physics, 66(10), 906-913.   DOI   ScienceOn
44 Vosniadou, S., Ioannides, C., Dimitrakopoulou, A., &Papademetriou, E. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction, 11, 381-419.   DOI   ScienceOn
45 Weiss, I. R., Pasley, J. D., Banilower, E. R., & Heck, D. J. (2003). A study of K-12 mathematics and science education in the United States. North Carolina: Horizon Research.