• Title/Summary/Keyword: 주파수 도약신호

Search Result 62, Processing Time 0.027 seconds

Hopping Information Generation of Unknown Frequency Hopping Signals in Wireless Channel Environments (무선채널환경에서 미상의 주파수 도약신호에 대한 도약정보 생성 기법)

  • Ahn, Junil;Lee, Chiho;Jeong, Unseob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.215-222
    • /
    • 2019
  • A frequency hopping(FH) signal can change its carrier frequency during transmission and has spread-spectrum characteristics in these frequency bands. Therefore, FH signals are widely used in applications that require low-probability-of-intercept(LPI) and anti-jamming (AJ) abilities in wireless communication environments. In this study, the authors propose a method for generating hopping information (HI), which includes start time, dwell time, and hopping frequency for unknown FH signals. The proposed blind HI generation method produces signal detection information based on the spectrum data and then extracts HI using operational procedures for estimating the target FH signal's status, such as appearance, maintenance, and termination. Further, simulation results demonstrate that the proposed method provides accurate HI without detection omissions for various FH signals.

A Study on Frequency Hopping Signal Detection Using a Polyphase DFT Filterbank (다상 DFT 필터뱅크를 이용한 도약신호 검출에 관한 연구)

  • Kwon, Jeong-A;Lee, Cho-Ho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.789-796
    • /
    • 2013
  • It is known that the detection of hopping signals without any information about hopping duration and hopping frequency is rather difficult. This paper considers the blind detection of hopping signal's information such as hopping duration and hopping frequency from the sampled wideband signals. In order to find hopping information from the wideband signals, multiple narrow-band filters are required in general, which leads to huge implementation complexity. Instead, this paper employs the polyphase DFT(discrete Fourier transform) filterbank to reduce the implementation complexity. This paper propose hopping signal detection algorithm from the polyphase DFT filterbank output. Specifically, based on the binary image processing, the proposed algorithm is developed to decrease the memory size and H/W complexity. The performance of the proposed algorithm is evaluated through the computer simulation and FPGA (field programmable gate array) implementation.

A Blind Hopping Phase Estimator in Hopped FM/BFSK Systems (도약 FM/BFSK 시스템에서 블라인드 도약 위상 추정기)

  • Seong, Jinsuk;Jeong, Min-A;Kim, Kyung-Ho;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.573-581
    • /
    • 2014
  • We proposed a hopping phase estimator to demodulate the received signals without any hopping information in frequency hopping spread spectrum systems. The demodulation process in this paper is as follows: hopped frequency tracking is accomplished by choosing a frequency component with maximum amplitude after taking discrete Fourier transform and a hopping frequency estimator which estimates the phase generated by hopped frequency is established through difference product and down-sampling. We obtained the probability density function and variance performance of the proposed estimator and confirmed that the analysis and the simulation results were agreed with each other.

Adaptive Projection Matrix Beamformer for Frequency Hopping Systems Robust to Jamming environment (의도적 간접신호에 강한 주파수 도약 시스템용 적응 투영행렬 빔형성 기법)

  • Jung, Sung-Hun;Shim, Sei-Joon;Kim, Sang-Heon;Lee, Chung-Yong;Youn, Dae-Hee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.25-32
    • /
    • 2005
  • Frequency hopping system has been adopted to many communication systems in order to overcome the inferior situation such as jamming environment. But typically its processing gain being limited, data interfered by jamming signal could not be fully recovered. This can be enhanced by combing FH system with spatial interference canceller which is a kind of active beamformer In this Paper, we proposed the compensation method of weight vector discrepancy according to the hopped frequencies and the PMBF method which is able to eliminate the inference effectively with less computational complexity. That is, the steering vector of wanted signals can be calculated from the frame without jamming signals using eigen analysis. New projection matrix extracted by the steering vector of wanted signal eliminates the interferences from the covariance matrix of received signal including wanted signal and jamming signals. This PMBF has similar performance of SINR beamformer with less computational complexity.

Detection Probability Improvement Scheme Optimized for Frequency-Hopping Signal Detection (주파수 도약 신호 탐지에 최적화된 탐지 확률 향상 기법)

  • Lee, In-Seok;Oh, Seong-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.783-790
    • /
    • 2018
  • The frequency-hopping technique is one of the spread-spectrum techniques. Frequency hopping is a communication system in which the carrier frequency channel is hopped within the wideband. Therefore, a frequency-hopping system has such advantages as antijamming and low probability of intercept. This system is often used in military communications. Because frequency-hopping signal detection is difficult, it is an important research issue. A novel detection technique is proposed that can improve detection probability. When the received signal is transformed to a frequency domain sample by fast Fourier transform, spectral leakage lowers the detection probability. This problem can be solved by using the Hamming window, and the detection probability can be increased. However, in a frequency-hopping environment, the windowing technique lowers the detection probability. The proposed method solves this weakness. The simulation results show that the proposed detection technique improves the detection probability by as much as 13 %.

Frequency Hopping Signal Analysis Using High-Speed Parallel Processing (고속 병렬처리 기법을 활용한 주파수 도약 신호 분석)

  • Lee, Kwang-Yong;Yoon, Hyun-Chul;Lee, Hyeon-Hwi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.251-254
    • /
    • 2014
  • In this paper, we studied a technique of extracting a Frequency Hopping(FH) signal for analysis using high-speed parallel processing structure. Unlike fixed frequency signal, FH signal is difficult to detect and analyze because FH systems use many random frequencies instead of a single carrier frequency. To solve this problem we designed a method that analyze FH signal using high-speed parallel processing. In order to apply parallel processing, we use CUDA using GPU and compare single processing with prarallel processing. As a result, using CUDA on a GPU is about 8.53 times faster than single processing.

Analysis of the effect of Digital frequency synthesizer in FSK-Frequency-hopped data communications (FSK-주파수 도약 데이터 통신시스템에서의 디지털 주파수 합성기의 영향분석)

  • 송인근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.879-886
    • /
    • 2003
  • Agile frequency synthesizers are the common device used for commandable, wide-band frequency hopping in frequency-hopped (FH) communications. In this paper, synthesizer phase transient effect and its compensation methods in an FH/FSK(Frequency Hopped Frequency Shift Keying) system are studied. Models for these analysis are developed and resulting performance degradations are computed. The basic PLL is difficult to implement for fast frequency hopping in narrowband radio communication systems. To solve this problem, digital frequency synthesizer/CPM (Continuous Phase Modulation)modulator is proposed. And it's performance is analyzed theoretically. The analysis show that fast frequency hopping is possible in frequency hopping system that use digital frequency synthesizer/CPM modulator.

Tile Based Frequency Hopping Chirp Spread Spectrum Technique (타일 기반 주파수 도약 첩 대역 확산 기법)

  • Lee, Chulho;Lee, Byungkyu;Joo, Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.988-995
    • /
    • 2019
  • In this paper, we propose the Tile Based Frequency Hopping - Chirp Spread Spectrum(TBFH-CSS) technique, which has excellent Low Probability of Intercept(LPI)/Anti-Jamming(AJ) performance. Conventional Frequency Hopping - Chirp Spread Spectrum(FH-CSS) technique uses only single chirp signal, that makes the follower jammer easy to find and jam. However, proposed TBFH-CSS uses various kind of chirp signals which are generated according to the structure of basis tile, it is composed the basis time unit and the basis bandwidth unit. The TBFH-CSS signal has variety signal period and signal bandwidth. Therefore, the follower jammer hard to find and difficult to jam the TBFH-CSS signal. We analysis the LPI/AJ performance of the TBFH-CSS technique when the follow jamming attack exist and compared with the performance of the conventional FH-CSS technique. From the analysis, we can see the proposed TBFH-CSS technique has better LPI/AJ performance than conventional technique.

Design and Performance Analysis of the Digital Phase-Locked Loop For Frequency Hopping Spread Spectrum system (주파수도약 대역확산시스템을 위한 디지털 위상고정루프의 설계 및 성능분석)

  • Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1103-1108
    • /
    • 2010
  • In this paper, Frequency Synthesizer which is widely used for FH-SS system is proposed and the experimental results are analyzed. The performance of the DPLL(Digital Phase-Locked-Loop), which is the main part of the Synthesizer is analyzed by the computer program. Using Maxplus-II tool provided by altera. co., ltd, each part of the DPLL is designed and all of them is integrated into EPM7064SLC44-10 chip. And the simulation results are compared with the characteristics of the implemented circuits for analysis. And the experiential results show that the N value of the loop filter is toggled to adjacent N value, which result in phase jitter of the output. It can be resolved by increasing DCO(Digital Controlled oscillator) clock rate.

A Study on Interference Cancellation of Adaptive Frequency Hopping System (적응형 주파수도약 시스템의 간섭신호 제거에 관한 연구)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.396-401
    • /
    • 2017
  • In this paper, we propose a solution for interference with Bluetooth when connecting Bluetooth and other devices. The random frequency hopping technique is a technique of generating a hopping pattern using the entire Bluetooth channel without considering the interference of the wireless LAN. The proposed adaptive frequency hopping technique is a technique for generating a hopping pattern of Bluetooth channel considering periodic carrier sensing of Bluetooth and considering WLAN interference. Simulation results show that the use of adaptive frequency hopping reduces the packet error rate as the Bluetooth carrier sensing interval decreases even in the congestion of WLAN interference. Especially, the frequency hopping technique improves the average packet error rate by about 13% compared to the adaptive frequency hopping technique.