• Title/Summary/Keyword: 주입압력

Search Result 490, Processing Time 0.039 seconds

A Study on the Activated Carbon Injection and Filtration Process for Removal of Chlorinated Organic Compound in the Incinerator Flue Gas (활성탄의 분무 여과에 의한 소각로 배가스 중의 유기 염소계 화합물의 제거 공정 연구)

  • Choo, Changupp;Whang, Jaedong;Lee, Joyoung;Cho, Chulhoon;Shin, Byungchul
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.113-119
    • /
    • 2000
  • Due to the toxicity of dioxin in the incinerator flue gas, it becomes a severe social problem. Activated carbon adsorption process is one of the methods for removing dioxin in the flue gas and was investigated its performance for removing hazardous organic compounds. Since dioxin is very hazardous material, 1,2-dichlorobenzene(o-DCB), one of the precursor material of dioxin, was used as adsorbate. The effects of air flow rate, pressure drop in the bag filter, operation temperature of bag filter, and kinds of adsorbents on the removal of o-DCB were measured and analysed. Experimental results showed that the operating temperature was recommended within the range of $140{\sim}170^{\circ}C$ considering the operating condition of incinerator. Also it was necessary to maintain the pressure drop of bag filter $120mmH_2O$ for enhancing the adsorption at the surface layer of activated carbon formed on the bag filter. The use of mixture of same amount of activated carbon and diatomite showed more than 90% removal of o-DCB and also reduced the consumption of activated carbon.

  • PDF

An Experimental Analysis of Hydrate Production using Multi-Well, Plate-Type Cell Apparatus (다중공 평판형 셀기기에서 하이드레이트 생산실험 분석연구)

  • Bae, Jaeyu;Sung, Wonmo;Kwon, Sunil
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.304-309
    • /
    • 2007
  • In this study, the "Multi Well Plate-type cell Apparatus" was designed and setup for performing the producing experiments of methane hydrate by depressurization, heat stimulating methods. In order to characterizing the producing mechanism of hydrate through porous materials, the experiments for various producing methods have been conducted with the aid of the apparatus which has high permeability. In the experimental result of depressurization method, the pressure is temporarily increased unlikely conventional gas reservoir due to the sourcing effect of hydrate dissociation in the pore. Meanwhile, the temperature is decreased because of the endothermic reaction while hydrate is dissociated. In the experimental results of heat stimulating method, the dissociation in depressurization method is more slowly processed than that in thermal method, and hence, its gas production is lower. In the case of production right after heating, hydrate is dissociated only near injecting point and the permeability becomes greater at that area only. It infers that the more gas is produced during relatively earlier producing period. Since then, the hydrate is more slowly dissociated than the case of production after heating and soaking. This time, the performances of pressure and production obtained by thermal method have been analyzed in order to investigate the effect of soaking time on gas recovery. As a result, the gas recoveries in the case of 2 min and 4 min soaking are higher than case in 6 min soaking. This is reason that hydrate is reformed due to the decrease of temperature. It is expected that the experimental results obtained in this work may be more clearly explained by utilizing the lower permeable porous system with the greater hydrate saturation.

Introduction to Researches on the Characteristics of Gas Migration Behavior in Bentonite Buffer (벤토나이트 완충재 내 기체 이동의 거동 특성 관련 연구 동향 소개)

  • Kang, Sinhang;Kim, Jung-Tae;Lee, Changsoo;Kim, Jin-Seoup
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.333-359
    • /
    • 2021
  • Gases such as hydrogen and radon can be generated around the canister in high-level radioactive waste disposal systems due to several reasons including the corrosion of metal materials. When the gas generation rate exceeds the gas diffusion rate in the low-permeability bentonite buffer, the gas phase will form and accumulate in the engineered barrier system. If the gas pressure exceeds the gas entry pressure, gas can migrate into the bentonite buffer, resulting in pathway dilation flow and advective flow. Because a sudden occurrence of dilation flow can cause radionuclide leakage out of the engineered barrier of the radioactive waste disposal system, it is necessary to understand the gas migration behavior in the bentonite buffer to quantitatively evaluate the long-term safety of the engineered barrier. Experimental research investigating the characteristics of gas migration in saturated bentonite and research developing numerical models capable of simulating such behaviors are being actively conducted worldwide. In this technical note, previous gas injection experiments and the numerical models proposed to verify such behaviors are introduced, and the future challenges necessary for the investigation of gas migration are summarized.

Optimization of micro structure of solid oxide fuel cell electrode (고체산화물 연료전지 변수 조사 및 전극미세구조 최적화)

  • Jo, Dong Hyun;Chun, Jeong Hwan;Park, Ki Tae;Hwang, Ji Won;Kim, Sung Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.71.2-71.2
    • /
    • 2010
  • 고체산화물연료전지는 청정에너지원으로써 기존의 발전방식을 대신할 차세대 에너지원으로 각광 받고 있다. 고체산화물 연료전지는 고온에서 작동하는 특성상 실험을 통하여 전극미세구조 및 구동조건을 최적화하는 것은 매우 어렵다. 본 연구는 전기화학식을 이용한 전산모사를 통해서 고체산화물 연료전지의 구동조건에 따른 성능 평가 및 전극의 미세구조 최적화 과정을 수행하였다. 전극 내 전달현상을 무시하고 오직 전기화학반응만을 고려한 전산모사는 단전지의 전극미세구조 및 구동조건에 따른 전지성능을 빠르게 예측할 수 있으며, 이를 기반으로 다양한 조건에서 얻은 전지 성능 데이터를 통해 전극미세구조를 최적화하였다. 개회로전압, 활성화분극, 저항분극, 물질수송손실을 표현하기 위하여 Nernst 식, Butler-Voler 식, 옴의 법칙, dusty-gas 모델을 각각 사용하였으며, 전극미세구조 및 구동조건의 변화는 물질확산계수 및 교환전류밀도를 통하여 그 영향이 전지성능에 반영된다. 온도, 압력, 주입 연료의 조성에 대한 성능평가가 수행되었으며, 1023K, 1 bar의 조건하에서 최적의 단전지 성능을 위한 기공도와 기공크기를 조사하였다. 더 향상된 단전지 성능 확보를 위해서 실험에서 쓰이는 기능층(functional layer)과 유사하게 넓은 반응 면적과 원활한 반응물 및 생성물의 이동을 보장하도록 기공도 및 기공크기를 그레이딩한 전극구조(graded-electrode)를 디자인하고 성능을 평가하였다. 그 결과 기존의 전지구조 대신에 그레이딩된 전극을 사용할 경우 50%이상 향상된 전지성능을 예측할 수 있었다.

  • PDF

Structural Change of Supersonic Jet Due to Liquid Injection in Supersonic Backward Facing Step Flow (초음속 후향 계단 유동에서 액체 분사로 인한 초음속 제트의 구조 변화)

  • Ahn, Sang-Hoon;Han, Doo-Hee;Choi, Han-Young;Seo, Seong-Hyeon;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.9-16
    • /
    • 2019
  • The experiment on the liquid jet in crossflow in supersonic BFS (backward-facing step) flow was conducted to investigate the mixing characteristics. The working fluids are nitrogen and water. The shadow graph technique was used to visualize the flow field. Images captured by the high-speed camera were applied to analyze the flow phenomena. The liquid jet was injected at the re-circulation zone created by the supersonic jet flow. Experimental conditions are defined based on the pressure of the nitrogen gas chamber and pressurized liquid tank. In respective cases, the penetration depth of liquid jet and location of the Mach disc were observed to be proportional to the momentum ratio of gas and liquid jets.

Effects of Mg content ratio on the structure and corrosion properties of Al-Mg films

  • Jeong, Jae-Hun;Yang, Ji-Hun;Song, Min-A;Kim, Seong-Hwan;Jeong, Jae-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.165.1-165.1
    • /
    • 2016
  • Zn의 수요는 매년 증가하지만 매장량의 한계로 대체용 물질계가 개발이 필요한 시점이다. Zn보다 상대적으로 풍부하고 동일 두께의 Zn 코팅층과 비교하여 우수한 내식성을 보이는 Al과 Mg의 코팅층을 제작하여 Al-Mg 코팅 강판의 특성 분석 및 평가를 실시하였다. Al-Mg 코팅층은 99.99%의 Al, 99.9%의 Mg target을 사용하여 스퍼터링을 이용하여 냉연강판 위에 코팅하였다. 증발물질과 기판과의 거리는 7cm 이며, 기판은 세척을 실시한 후 클리닝 챔버에 장착하고 ~10-5 Torr 까지 진공배기를 실시하였다. 클리닝 챔버가 기본 압력까지 배기되면 아르곤 가스를 주입하고 기판 홀더에 -800 V의 직류 전압을 인가하여 약 30분간 글로우 방전 청정을 실시하였다. 기판의 청정이 끝나면 아르곤 가스를 차단하고 코팅 챔버로 시편을 이송 후 코팅층 성분의 구성형태에 따라 Al과 Mg을 코팅하였다. Al-Mg 코팅층은 $3{\mu}m$의 두께를 기준으로 Mg wt.%의 비율을 5% ~ 90%까지 변화시키며 코팅하였다. 그리고 후속 공정으로 질소 분위기 $400^{\circ}C$에서 10분간 열처리를 하였다. Al-Mg 코팅층을 주사전자현미경으로 관찰한 결과, 표면에서는 Al-Mg 코팅층에 존재하는 Mg 함량이 높아질수록 grain의 크기가 증가하였고 단면에서는 열처리 전의 치밀한 구조에서 열처리 후에는 주상구조 혹은 grain 구조가 선명해지는 것을 볼 수 있었으며 글로우방전분광기로 Al과 Mg의 성분 비율변화를 확인할 수 있었다. 또한 Al-Mg가 코팅된 강판을 염수분무시험을 통해서 내부식 특성을 확인하였다. Al-Mg 코팅 강판의 염수분무시험 결과, Mg 함량이 낮은 Al-Mg 코팅층은 열처리 후 뚜렷한 내식성 향상을 보였으며 Mg 조성 변화에 따라 일정한 경향성을 보였다. 하지만 Mg 함량이 높은 Al-Mg 코팅층은 열처리 후 급격한 내식성 저하와 함께 시편간의 편자가 커지는 것을 확인 할 수 있었다. 최적의 내식성을 보이는 Mg의 조성을 확인하기 위해서는 향후 보다 변별력이 높은 평가가 결과가 필요하다고 판단되어진다.

  • PDF

A optimized structural design of piston on moving in gas spring elevation working (가스 스프링 Elevation 동작에의 최적화된 피스톤 구조 설계)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8274-8283
    • /
    • 2015
  • Gas springs of the television is to control the piston speed when operating under along stroke(200~300 mm, television elevation)is possible. User by this principle is capable of elevation adjustment. First carried out a flow analysis of the piston. A piston speed adjustment technique for precise pipe type cross-section was examined. The piston structure for flow rate control and elevation action is proposed. This study is the development of a gas spring of more than 50 inch television with a large television stand. Hollow piston rod for optimal control(the outer diameter 19.9 mm, the inner diameter 13.9 mm) was injected into the nitrogen gas(0.3 mm/s) in. As a result, the flow rate the pressure drop of the piston rod as the increase was increased without any change of the external force. As a result, control of the displacement via the gas spring is possible.

Plasma Effects on the Growth of $In_{0.2}Ga_{0.8}N/GaN$ Heterostructures using Molecular Beam Epitaxy (분자선에피를 이용한 $In_{0.2}Ga_{0.8}N/GaN$ 이종접합구조의 성장에 미치는 플라즈마의 영향)

  • Shim Kyu-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.84-90
    • /
    • 2005
  • The influence of plasma parameters on the growth of $In_{0.2}Ga_{0.8}N/GaN$ heterostructures has been investigated using plasma-assisted molecular beam epitaxy. Since plasma ejects plenty of energetic particles with different energy levels and flux density at various rf power levels, plasma modulated both growth rate and optical properties significantly. For instance, surface roughness and the emission spectrum of photoluminescence were degraded at low and high rf power. According to sharp interfaces between epitaxial films and strong peaks observed from photoluminescence spectra, our experimental setup presented optimal operation range of rf powers at around 400W. The phenomena could be explained by the presence of energetic particles modulating the rate of plasma stimulated desorption and surface diffusion, and energetic particles exceeding critical value resulted in the incorporation of defects at subsurface. The optimal rf power regime increased by 100W for $In_{0.2}Ga_{0.8}N/GaN$ growth in comparison with GaN. The effects of rf power were discussed in conjunction with kinetic processes being stimulated by energetic particles.

Conceptual Design of 50 kW thermal Chemical-Looping Combustor and Analysis of Variables (열량기준 50kW급 매체순환식 가스연소기의 개념설계 및 변수해석)

  • 류호정;진경태
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.289-301
    • /
    • 2003
  • To develop a chemical-looping combustion technology, conceptual design of 50 kW thermal chemical-looping combustor, which is composed of two interconnected pressurized circulating fluidized beds, was performed by means of mass and energy balance calculations. A riser type fast fluidized bed was selected as an oxidizer and a bubbling fluidized bed was selected as a reducer by mass balance for the chemical-looping combustor. Calculated values of bed mass, solid circulation flux, and reactor dimension by mass and energy balance calculations were suitable for construction and operation of chemical-looping combustor. It is concluded from the comparison of the design results and operating values of commercial circulating fluidized bed that the process outline is realistic. Moreover, the previous results support that oxygen carrier particle, NiO/bentonite, fulfills the conversion rates needed for the proposed design. The effects of system capacity, metal oxide content in a oxygen carrier particle, amount of steam input, gas velocity, and solid depth on design values were investigated and the changes in the system performance can be estimated by proposed design tool.

Physical and Structural Properties of Amorphous Carbon Films Synthesized by Magnetron Sputtering Method (마그네트론 스퍼터링법에 의해 합성되어진 비정질 탄소박막들의 구조적, 물리적 특성)

  • Park, Yong-Seob;Cho, Hyung-Jun;Hong, Byung-You
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.122-127
    • /
    • 2007
  • In this research, amophous carbon films (a-C, a-C:H, a-C:N) were synthesized by closed-field unbalanced magnetron (CFUBM) sputtering using graphite target. We also fabricated amorphous carbon films with applying negative DC bias voltage of 200 V in during the deposition in working pressure. Also, a-C:H and a-C:N films was synthesized by adding acethylene($C_{2}H_{2}$) and nitrogen(N) gases of 4 and 3 sccm into Ar pressure. The a-C:H film synthesized at -200 V exhibited the maxumum hardness of 26.3 GPa, the smooth surface of 0.1 nm and the good adhesion of 30.5 N. And a-C:N film synthesized at -200 V exhibited at -200 V exhibited the best adhesion of 32 N. This paper examined the effect of $C_{2}H_{2}$ gas, $N_{2}$ gas and negative DC bias voltage as the parameter for improving the physical properties and the relation between structral and physical properties of carbon films.