DOI QR코드

DOI QR Code

Physical and Structural Properties of Amorphous Carbon Films Synthesized by Magnetron Sputtering Method

마그네트론 스퍼터링법에 의해 합성되어진 비정질 탄소박막들의 구조적, 물리적 특성

  • Park, Yong-Seob (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Cho, Hyung-Jun (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Hong, Byung-You (School of Information and Communication Engineering, Sungkyunkwan University)
  • 박용섭 (성균관대학교 정보통신공학부) ;
  • 조형준 (성균관대학교 정보통신공학부) ;
  • 홍병유 (성균관대학교 정보통신공학부)
  • Published : 2007.03.30

Abstract

In this research, amophous carbon films (a-C, a-C:H, a-C:N) were synthesized by closed-field unbalanced magnetron (CFUBM) sputtering using graphite target. We also fabricated amorphous carbon films with applying negative DC bias voltage of 200 V in during the deposition in working pressure. Also, a-C:H and a-C:N films was synthesized by adding acethylene($C_{2}H_{2}$) and nitrogen(N) gases of 4 and 3 sccm into Ar pressure. The a-C:H film synthesized at -200 V exhibited the maxumum hardness of 26.3 GPa, the smooth surface of 0.1 nm and the good adhesion of 30.5 N. And a-C:N film synthesized at -200 V exhibited at -200 V exhibited the best adhesion of 32 N. This paper examined the effect of $C_{2}H_{2}$ gas, $N_{2}$ gas and negative DC bias voltage as the parameter for improving the physical properties and the relation between structral and physical properties of carbon films.

본 연구에서는 비정질 탄소박막들(a-C, a-C:H, a-C:N)을 흑연타겟이 부착되어진 비대칭 마그네트론 스퍼터링법을 이용하여 증착하였으며, 음의 DC 바이어스 전압의 효과를 알아보기 위해 증착가스 압력내에서 200 V를 인가하여 탄소박막들을 제작하였다. 수소화된 비정질 탄소박막과 질화탄소박막은 각각 스퍼터링 가스로써 아세틸렌과 질소를 주입하여 제작하였다. 결과적으로 26.5 GPa의 높은경도와 0.1 nm의 낮은 거칠기 그리고 접착력은 30.5 N를 가지는 수소화된 비정질 탄소박막을 합성하였으며, 32 N의 좋은 접착 특성을 나타내는 질화 탄소 박막을 합성하였다. 본 논문에서는 아세틸렌과 질소 가스의 효과와 음의 DC 바이어스 전압에 따른 비정질 탄소박막들의 구조적 특성과 물리적 특성과의 관계를 규명하였다.

Keywords

References

  1. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002) https://doi.org/10.1016/S0927-796X(02)00005-0
  2. A. A. Voevodin, M. S. Donley, J. S. Zabinski, J. E. Bultman, Surf. Coat. Technol. 76-77, 534 (1995)
  3. R. Hauert, Diam. Relat. Mater. 11, 1781 (2003) https://doi.org/10.1016/S0925-9635(02)00166-8
  4. B. Zhou, B. C. Prorok, a. Erdemir, O. Eryilmaz, Diam. Relat. Mater. 16, 342 (2007) https://doi.org/10.1016/j.diamond.2006.06.021
  5. Gert Irmer et al., Adv. Eng. Mater. 7 (8), 694 (2005) https://doi.org/10.1002/adem.200500006
  6. M. Neuhaeuser et al., Diam. Relat. Mater. 9, 1500 (2000) https://doi.org/10.1016/S0925-9635(00)00276-4
  7. A. C. Ferrari et al., Diam. Relat. Mater. 12, 905 (2003) https://doi.org/10.1016/S0925-9635(02)00370-9
  8. Liang-Yih Chen et al., Diam. Relat. Mater. 12, 968 (2003) https://doi.org/10.1016/S0925-9635(02)00351-5
  9. R. O. Dillon et al., Phys. Rev. B 29, 3482 (1984) https://doi.org/10.1103/PhysRevB.29.3482
  10. E. Ech-chamikh et al., Solar Energy Materials & Solar cells 90, 1420 (2006) https://doi.org/10.1016/j.solmat.2005.10.007
  11. Kenji Yamamoto et al., Tribology International 39, 1609 (2006) https://doi.org/10.1016/j.triboint.2006.01.004
  12. Y. T. Pei et al., Acta Mater. 53, 4505-4521 (2005) https://doi.org/10.1016/j.actamat.2005.05.045
  13. V. Kulikovsky et al., Diam. Relat. Mater. 10, 1076 (2001) https://doi.org/10.1016/S0925-9635(00)00525-2
  14. D. Liu et al., Surf. Coat. Technol. 172, 194 (2003) https://doi.org/10.1016/S0257-8972(03)00338-4
  15. M. Diesselberg et al., Surf. Coat. Technol. 188-189, 612 (2004)
  16. H. S. Myung et al., Thin Solid Films 494, 123 (2006) https://doi.org/10.1016/j.tsf.2005.07.170

Cited by

  1. Effect of Plasma Density on the Tribological Properties of Amorphous Carbon Thin Films vol.20, pp.5, 2011, https://doi.org/10.5757/JKVS.2011.20.5.333
  2. Effects of RF Power on Physical and Electrical Characteristics of TiC Thin Films Deposited by Magnetron Sputtering vol.27, pp.7, 2014, https://doi.org/10.4313/JKEM.2014.27.7.458