Browse > Article
http://dx.doi.org/10.7474/TUS.2021.31.5.333

Introduction to Researches on the Characteristics of Gas Migration Behavior in Bentonite Buffer  

Kang, Sinhang (Korea Atomic Energy Research Institute (KAERI))
Kim, Jung-Tae (Korea Atomic Energy Research Institute (KAERI))
Lee, Changsoo (Korea Atomic Energy Research Institute (KAERI))
Kim, Jin-Seoup (Korea Atomic Energy Research Institute (KAERI))
Publication Information
Tunnel and Underground Space / v.31, no.5, 2021 , pp. 333-359 More about this Journal
Abstract
Gases such as hydrogen and radon can be generated around the canister in high-level radioactive waste disposal systems due to several reasons including the corrosion of metal materials. When the gas generation rate exceeds the gas diffusion rate in the low-permeability bentonite buffer, the gas phase will form and accumulate in the engineered barrier system. If the gas pressure exceeds the gas entry pressure, gas can migrate into the bentonite buffer, resulting in pathway dilation flow and advective flow. Because a sudden occurrence of dilation flow can cause radionuclide leakage out of the engineered barrier of the radioactive waste disposal system, it is necessary to understand the gas migration behavior in the bentonite buffer to quantitatively evaluate the long-term safety of the engineered barrier. Experimental research investigating the characteristics of gas migration in saturated bentonite and research developing numerical models capable of simulating such behaviors are being actively conducted worldwide. In this technical note, previous gas injection experiments and the numerical models proposed to verify such behaviors are introduced, and the future challenges necessary for the investigation of gas migration are summarized.
Keywords
Gas migration; Clay material; Two-phase fluid flow; Coupled hydro-mechanical behavior; High-level radioactive waste disposal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Guo, G., Fall, M., 2018, Modelling of dilatancy-controlled gas flow in saturated bentonite with double porosity and double effective stress concepts, Engineering Geology, Vol. 243, pp. 253-271.   DOI
2 Harrington, J.F., 2016, Task A: Stage 1A: 1D flow through saturated bentonite under constant volume boundary conditions, British Geological Survey, Pers. comm. 05/10/2016.
3 Harrington, J.F., Horseman, S.T., 2003, Gas Migration in KBS-3 Buffer Bentonite: Sensitivity of Test Parameters to Experimental Boundary Conditions, SKB Technical Report No. TR-03-02. Svensk Karnbranslehantering AB, Stockholm, Sweden.
4 Ando, K., Adachi, T., Fujiwara, A., Vomvoris, S., Marshall, P., Lanyon, B., Yamamoto, S., Shimmura, A., 2002, The in-situ gas migration test (GMT) at the Grimsel test site: resaturation phase of silo type repository, Clays In Natural And Engineered Barriers For Radioactive Waste Confinement, December 9-12, 2002, Reims, France.
5 Alonso, E. E., Gens, A., Josa, A, 1990, A constitutive model for partially saturated soils, Geotechnique, Vol. 40(3), pp. 405-430.   DOI
6 Bond, A., Chittenden, N., Thatcher, K., 2018, RWM Coupled Processes Project: First Annual Report for DECOVALEX-2019, Quintessa Report to RWM. QRS-1612D-R1 v1.2. Quintessa Ltd., Henley-on-Thames, UK.
7 Dagher, E.E., Nguyen, T.S., Sedano, J.I., 2019, Development of a mathematical model for gas migration (two-phase flow) in natural and engineered barriers for radioactive waste disposal, Geological Society, London, Special Publications, Vol 482(1), pp. 115-148.   DOI
8 Davies, J.P., Davies, D.K., 2001, Stress-dependent permeability: characterization and modeling, Spe Journal, Vol. 6(2), pp. 224-235.   DOI
9 Fredlund, D.G., Xing, A., Huang, S., 1994, Predicting the permeability function for unsaturated soils using the soil-water characteristic curve, Canadian Geotechnical Journal, Vol. 31(4), pp. 533-546.   DOI
10 Galle, C., 1998, Migration des gaz et pression de rupture dans une argile compactee destinee a la barriere ouvragee d'un stockage profound, Bulletin de la Societe Geologique de France, Vol. 169, pp. 675-680.
11 Galle, C., Tanai, K., 1998, Evaluation of gas transport properties of backfill materials for waste disposal: H2 migration experiments in compacted Fo-Ca Clay, Clays and Clay Minerals, Vol. 46, pp. 498-508.   DOI
12 Gens, A., 1995, Constitutive laws, In Modern issues in non-saturated soils, pp. 129-158, Springer, Vienna.
13 Mualem, Y., 1978, Hydraulic conductivity of unsaturated porous media: generalized macroscopic approach, Water Resources Research, Vol. 14(2), pp. 325-334.   DOI
14 Lee, C., Lee, J., Kim, M., Kim, G.Y., 2020c, Implementation of Barcelona Basic Model into TOUGH2-MP/FLAC3D, Tunnel and Underground Space, Vol. 30(1), pp. 39-62.   DOI
15 Mazars, J., 1986, A description of micro-and macroscale damage of concrete structures, Engineering Fracture Mechanics, Vol. 25(5-6), pp. 729-737.   DOI
16 Mazars, J., Pijaudier-Cabot, G., 1989, Continuum damage theory-application to concrete, Journal of engineering mechanics, Vol. 115(2), pp. 345-365.   DOI
17 Horseman, S.T., Harrington, J.F., Sellin, P., 2004, Water and Gas Movement in Mx80 Bentonite Buffer Clay, In: Symposium on the Scientific Basis for Nuclear Waste Management XXVII (Kalmar), Materials Research Society, Vol. 807, pp. 715-720.
18 Kawai, T., 1978, New discrete models and their application to seismic response analysis of structures, Nuclear engineering and design, Vol. 48(1), pp. 207-229.   DOI
19 Land, C.S., 1968, Calculation of imbibition relative permeability for two-and three-phase flow from rock properties, Society of Petroleum Engineers Journal, Vol. 8(2), pp. 149-156.   DOI
20 Meschke, G., Grasberger, S., 2003, Numerical modeling of coupled hydromechanical degradation of cementitious materials, Journal of engineering mechanics, Vol. 129(4), pp. 383-392.   DOI
21 The Grimsel Test Site in Switzerland, accessed October 1, 2021. available from [grimsel.com/gts-projects/]
22 Olivella, S., Alonso, E.E., 2008, Gas flow through clay barriers, Geotechnique, Vol. 58(3), pp. 157-176.   DOI
23 Rutqvist, J., Tsang, C.F. (2002). A study of caprock hydromechanical changes associated with CO 2-injection into a brine formation. Environmental Geology, 42(2-3), 296-305.   DOI
24 Tang, C.A., Tham, L.G., Lee, P.K.K., Yang, T.H., Li, L.C., 2002, Coupled analysis of flow, stress and damage (FSD) in rock failure, International Journal of Rock Mechanics and Mining Sciences, Vol. 39(4), pp. 477-489.   DOI
25 Volckaert, G., Ortiz, L., De Canniere, P., Put, M., Horseman, S.T., Harrington, J.F., Fioravante, V., Impey, M., 1995, MEGAS - Modelling and Experiments on Gas Migration in Repository Host Rocks: Final Report Phase 1, European Commission Report EUR 16235 EN.
26 Vomvoris, S., Lanyon, B., Marschall, P., Ando., K., Adachi, T., Fujiwara, A., Yamamoto, S., 2003, Sand/bentonite barriers and gas migration: the GMT large-scale in-situ test in the Grimsel Test Site, Materials Research Society Proceedings on Scientific Basis for Nuclear Waste Management XXVI, Vol. 757, Materials Research Society, Warrendale, Pennsylvania.
27 Ye, W. M., Xu, L., Chen, B., Chen, Y.G., Ye, B., Cui, Y.J., 2014, An approach based on two-phase flow phenomenon for modeling gas migration in saturated compacted bentonite, Engineering geology, Vol. 169, pp. 124-132.   DOI
28 Sedighi, M., Thomas, H.R., Al Masum, S., Vardon, P.J., Nicholson, D., Chen, Q. (2015). Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer. Geological Society, London, Special Publications, 415(1), 189-201.   DOI
29 Graham, C.C., Harrington, J.F., 2014, Final Report of FORGE 3.2.1: Key Gas Migration Processes in Compact Bentonite, FORGE Report D3.33. British Geological Survey, Keyworth, Nottingham, UK.
30 Gerard, P., Harrington, J., Charlier, R., Collin, F., 2014, Modelling of localised gas preferential pathways in claystone, International Journal of Rock Mechanics and Mining Sciences, Vol. 67, pp. 104-114.   DOI
31 Graham, C.C., Harrington, J.F., Cuss, R.J., Sellin, P., 2012, Gas migration experiments in bentonite: implications for numerical modelling, Mineralogical Magazine, Vol. 76(8), pp. 3279-3292.   DOI
32 Guo, G., Fall, M., 2021, Advances in modelling of hydro-mechanical processes in gas migration within saturated bentonite: A state-of-art review, Engineering Geology, 106123.
33 Hallett, P.D., Newson, T.A., 2005, Describing soil crack formation using elastic-plastic fracture mechanics, European Journal of Soil Science, Vol. 56(1), pp. 31-38.   DOI
34 Harrington, J.F., De Lavaissiere, R., Noy, D.J., Cuss, R.J., Talandier, J., 2012, Gas flow in Callovo-Oxfordian claystone (COx): results from laboratory and field-scale measurements, Mineralogical Magazine, Vol. 76, pp. 3303-3318.   DOI
35 Graham, J., Halayko, K.G., Hume, H., Kirkham, T., Gray, M., Oscarson, D., 2002, A capilliarity-advective model for gas break-through in clays, Engineering Geology, Vol. 64, pp. 273-286.   DOI
36 Kim, K., Rutqvist, J., Harrington, J.F., Tamayo-Mas, E., Birkholzer, J.T., 2021, Discrete dilatant pathway modeling of gas migration through compacted bentonite clay, International Journal of Rock Mechanics and Mining Sciences, Vol. 137, pp. 104569.   DOI
37 Harrington, J.F., Horseman, S.T., 2003, Gas Migration in KBS-3 Buffer Bentonite: Sensitivity of Test Parameters to Experimental Boundary Conditions, SKB Technical Report No. TR-03-02. Svensk Karnbranslehantering AB, Stockholm, Sweden.
38 Horseman, S.T., Harrington, J.F., Sellin, P., 1996, Gas Migration in MX80 Buffer Bentonite, In: Symposium on the Scientific Basis for Nuclear Waste Management XX (Boston), Materials Research Society, 465, pp. 1003-1010.
39 Mualem, Y., 1976, A new model for predicting the hydraulic conductivity of unsaturated porous media, Water resources research, Vol. 12(3), pp. 513-522.   DOI
40 Lee, J., Lee, C., Kim, G.Y., 2020e, Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A, Tunnel and Underground Space, Vol. 30(3), pp. 382-393.
41 Nash, P.J., Swift, B.T., Goodfield, M., Rodwell, W.R., 1998, Modelling gas migration in compacted bentonite, Posiva Report, pp. 98-08.
42 Nguyen, T.S., Le, A.D., 2015, Simultaneous gas and water flow in a damage-susceptible bedded argillaceous rock, Canadian Geotechnical Journal, Vol. 52(1), pp. 18-32.   DOI
43 Pusch, R., Forsberg, T., 1983, Gas Migration through Bentonite Clay, SKB Technical Report 83-71, Svensk Karnbranslehantering AB, Stockholm, Sweden.
44 Cuss, R.J., Harrington, J.F., Noy, D.J., Graham, C.C., Sellin, P., 2014b, Evidence of localised gas propagation pathways in a field-scale bentonite engineered barrier system; results from three gas injection tests in the large scale gas injection test (Lasgit), Applied Clay Science, Vol. 102, pp. 81-92.   DOI
45 Tamayo-Mas, E., Harrington, J.F., Shao, H., Dagher, E., Lee, J., Kim, K., Rutqvist, J., Lai, S., Chittenden, N., Wang, Y., Damians, I., Olivella, S., 2018, Numerical Modelling of Gas Flow in a Compact Clay Barrier for DECOVALEX-2019, Paper presented at the 2nd International Discrete Fracture Network Engineering Conference, 20-21, June, Seattle, Washington, USA.
46 Van Genuchten, M.T., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil science society of America journal, Vol. 44(5), pp. 892-898.   DOI
47 Xu, W. J., Shao, H., Hesser, J., Wang, W., Schuster, K., Kolditz, O., 2013, Coupled multiphase flow and elasto-plastic modelling of in-situ gas injection experiments in saturated claystone (Mont Terri Rock Laboratory), Engineering Geology, Vol. 157, pp. pp. 55-68.   DOI
48 Galle, C., 2000, Gas breakthrough pressure in compacted Fo-Ca clay and interfacial gas overpressure in waste disposal context, Applied Clay Science, Vol. 17, pp. 85-97.   DOI
49 Fall, M., Nasir, O., Nguyen, T.S., 2014, A coupled hydro-mechanical model for simulation of gas migration in host sedimentary rocks for nuclear waste repositories, Engineering Geology, Vol. 176, pp. 24-44.   DOI
50 Harrington, J.F., Horseman, S.T., 1999, Gas transport properties of clays and mudrocks, In: Aplin, A.C., Fleet, A.J., Macquaker, J.H., (eds) Muds and Mudstones: Physical and Fluid Flow Properties, Geological Society of London, London, Special Publications, Vol. 158, pp. 107-124.   DOI
51 Tamayo-Mas, E., Harrington, J.F., 2020, DECOVALEX-2019 Project: Task A Final Report.
52 Damians, I.P., Olivella, S., Gens, A., 2017, Modelling gas flow experiments in Mx80 bentonite, In 9th Workshop on CODE_BRIGHT, Barcelona.
53 Lee, J., Lee, C., Kim, G.Y., 2020f, Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A, Tunnel and Underground Space, Vol. 29(4), pp. 262-279.
54 Harrington, J.F., Graham, C.C., Cuss, R.J., Norris, S., 2017, Gas network development in a precompacted bentonite experiment: Evidence of generation and evolution, Applied Clay Science, Vol. 147, pp. 80-89.   DOI
55 Pusch, R., Ranhagen, L., Nilsson, K., 1985, Gas Migration through MX-80 Bentonite, Nagra Technical Report NTB 85-36, Nagra, Wettingen, Switzerland.
56 Rutqvist, J., Kim, K., Xu, H., Guglielmi, Y., Birkholzer, J. (2018). Investigation of Couple d Processes in Argillite Rock: FY18 Progress. Prepared for US Department of Energy. Spent Fuel and Waste Disposition. LBNL, 2001168.
57 Sellin, P., Harrington, J.F., 2006, Large-Scale Gas Injection Test (Lasgit) Current Status, American Nuclear Society High Level Waste Meeting, Las Vegas.
58 Swift, B.T., Hoch, A.R., Rodwell, W.R., 2001, Modelling gas migration in compacted bentonite: GAMBIT Club Phase 2, Final report (No. POSIVA-01-02), Posiva Oy.
59 Cuss, R.J., Harrington, J.F., Noy, D.J., 2012, Final Report of FORGE WP4.1.1: The stress path permeameter experiment conducted on Callovo-Oxfordian Claystone, British Geological Survey Commissioned Report, CR/12/140. 116pp. British Geological Survey, Keyworth, Nottingham, UK.
60 Cuss, R.J., Harrington, J.F., Noy, D.J., Wikman, A., Sellin, P., 2011, Large scale gas injection test (Lasgit): Results from two gas injection tests, Physics and Chemistry of the Earth, Vol. 36, pp. 1729-1742.   DOI
61 Juanes, R., Spiteri, E.J., Orr Jr, F.M., Blunt, M.J., 2006, Impact of relative permeability hysteresis on geological CO2 storage, Water resources research, Vol. 42(12).
62 Hoch, A.R., Cliffe, K.A., Swift, B.T., Rodwell, W.R., 2004, Modelling Gas Migrationin Compacted Bentonite: GAMBIT Club Phase 3, Final Report, POSIVA, Olkiluoto, Finland.
63 Horseman, S.T., Harrington, J.F., Sellin, P., 1999, Gas migration in clay barriers, Engineering Geology, Vol. 54, pp. 139-149.   DOI
64 Horseman, S.T., Harrington, J.F., Sellin, P., 2003, Water and gas movement in Mx80 bentonite buffer clay, MRS Online Proceedings Library (OPL), pp. 807.
65 Killough, J.E., 1976, Reservoir simulation with history-dependent saturation functions, Society of Petroleum Engineers Journal, Vol. 16(1), pp. 37-48.   DOI
66 Lee, C., Choi, H.J., Kim, G.Y., 2020a, Numerical modeling of coupled thermo-hydro-mechanical behavior of mx80 bentonite pellets, Tunnel and Underground Space, Vol. 30(5), pp. 446-461.   DOI
67 Lee, C., Lee, J., Kim, G.Y., 2020b, Numerical analysis of FEBEX at Grimsel Test Site in Switzerland, Tunnel and Underground Space, Vol 30(4), pp. 359-381.   DOI
68 Lee, C., Yoon, S., Lee, J., Kim, G.Y., 2019, Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils, Tunnel and Underground Space, Vol. 29(1), pp. 38-51.   DOI
69 Lee, J., Kim, I., Ju, H., Choi, H., Cho, D., 2020d, Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea, Journal of Nuclear Fuel Cycle and Waste Technology, Vol. 18(S), pp. 1-19.
70 KACHANOV, L.M., 1958, Time of the rupture process under creep conditions, Izy Akad. Nank SSR Otd Tech Nauk, Vol. 8, pp. 26-31.
71 Cuss, R.J., Harrington, J.F., Giot, R., Auvray, C., 2014a, Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone, In: Norris, S., Bruno, J., (eds) Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Geological Society, London, Special Publications, Vol. 400, pp. 507-519.   DOI
72 Tamayo-Mas, E., Harrington, J.F., Bruning, T., Shao, H., Dagher, E.E., Lee, J., Rutqvist, J., Kolditz, O., Lai, S.H., Chittenden, N., Wang, Y., Damians, I.P., Olivella, S., 2021, Modelling advective gas flow in compact bentonite: Lessons learnt from different numerical approaches, International Journal of Rock Mechanics and Mining Sciences, Vol. 139, pp. 104580.   DOI
73 Tanai, K., Kanno, T., Galle, C., 1996, Experimental study of gas permeabilities and breakthrough pressures in clays, MRS Symposia Proceedings, 465, 1003-1010.
74 Marschall, P., Horseman, S.T., Gimmi, T., 2005, Characterisation of gas transport properties of the opalinus clay, a potential host rock formation for radioactive waste disposal, Oil and Gas Science and Technology - Rev. IFP, Vol. 60, pp. 121-139.   DOI
75 Donohew, A.T,, Horseman, S.T., Harrington, J.F., 2000, Gas entry into unconfined clay pastes at water contents between the liquid and plastic limits, pp. 369-394 in: Environmental Mineralogy-Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management (J.D. Cotter-Howells, L.S. Campbell, E. Valsami-Jones, M. Batchelder, editors), Mineralogical Society Special Publication, 9. Mineralogical Society of Great Britain and Ireland, London, UK.
76 Mazars, J., 1984, Application de la mecanique de l'endommagement au comportement non lineaire et a la rupture du beton de structure, THESE DE DOCTEUR ES SCIENCES PRESENTEE A L'UNIVERSITE PIERRE ET MARIE CURIE-PARIS 6.
77 Rutqvist, J., Ijiri, Y., Yamamoto, H. (2011). Implementation of the Barcelona Basic Model into TOUGH-FLAC for simulations of the geomechanical behavior of unsaturated soils. Computers & Geosciences, 37(6), 751-762.   DOI