Plasma Effects on the Growth of $In_{0.2}Ga_{0.8}N/GaN$ Heterostructures using Molecular Beam Epitaxy

분자선에피를 이용한 $In_{0.2}Ga_{0.8}N/GaN$ 이종접합구조의 성장에 미치는 플라즈마의 영향

  • Shim Kyu-Hwan (Semiconductor Science Technology Department (Graduate), Chonbuk National University)
  • 심규환 (전북대학교 반도체물성연구소 반도체과학기술학과(대학원))
  • Published : 2005.06.01

Abstract

The influence of plasma parameters on the growth of $In_{0.2}Ga_{0.8}N/GaN$ heterostructures has been investigated using plasma-assisted molecular beam epitaxy. Since plasma ejects plenty of energetic particles with different energy levels and flux density at various rf power levels, plasma modulated both growth rate and optical properties significantly. For instance, surface roughness and the emission spectrum of photoluminescence were degraded at low and high rf power. According to sharp interfaces between epitaxial films and strong peaks observed from photoluminescence spectra, our experimental setup presented optimal operation range of rf powers at around 400W. The phenomena could be explained by the presence of energetic particles modulating the rate of plasma stimulated desorption and surface diffusion, and energetic particles exceeding critical value resulted in the incorporation of defects at subsurface. The optimal rf power regime increased by 100W for $In_{0.2}Ga_{0.8}N/GaN$ growth in comparison with GaN. The effects of rf power were discussed in conjunction with kinetic processes being stimulated by energetic particles.

분자선에피를 이용한 $In_{0.2}Ga_{0.8}N/GaN$ 이종접합 구조의 에피성장에 미치는 플라즈마의 rf전력의 영향에 대해 고찰하였다. 플라즈마를 발생시키는 rf 전력과 플라즈마 챔버압력의 조건에 따라 성장표면에 도달하는 분자나 원자의 에너지와 flux가 조절되어 에피성장 속도와 물질적 특성을 변화시킨다. 전력이 너무 낮거나 높은 조건에서 표면거칠기와 광특성이 각각 저하된 결과를 보였으며, 적정한 전력인 400W에서 성장한 $In_{0.2}Ga_{0.8}N/GaN$이 종접합 구조에서 날카로운 계면과 강한 photoluminescence 피크를 보였다. 이러한 현상에 대한 원인으로 고에너지 입자들이 성장표면에서 작용하는 기구들인 플라즈마에 의한 탈착과 표면확산, 성장표면의 하부에 주입되는 결함의 발생에 대하여 논하였다.

Keywords

References

  1. M. S. Shur, R. Gaska, A. Khan, and G. Simin, Devices, Circuits and Systems, Proceedings of the Fourth IEEE International Caracs Conference, D051-1-D051-8 (2002)
  2. C. Kim, I. K Robinson, J. M. Myoung, K. H. Shim, and K. Kim, J. Appl. Phys. 85, 4040 (1999) https://doi.org/10.1063/1.370308
  3. S. J Pearton, C. R. Abernathy, B. P. Gila, F. Ren, J. M. Zavada, and S. N. G. Chu, Semiconductor Device Research Symposium, 10-12 Dec. 302 (2003)
  4. C. J. Tsai, H. A. Atwater, and T. Vreeland, Appl. Phys. Lett. 57, 2305 (1990) https://doi.org/10.1063/1.103877
  5. A. Barnett, C. H. Choi, and R. Kaspi, Mat. Res. Soc. Symp. Proc., ISBN 1-55899-133-6, 201 (1991)
  6. M. S. H. Leung, R. Klockenbrink, C. Kisielowski, H. Fujii, J. Kruger, G. S. Sudkier , A. Anders, Z. Liliental-Weber, M. Rudin, and E.R. Weber, Mater. Res. Soc. Symp. Proc. 449, 221 (1997)
  7. H. Fuji, C. Kisielowski, J. Krueger, M. S. Leung, R. Klockenbrink, M. Rubin, and E. R. Weber, Mat. Res. Soc. Symp. Proc. 449, 227 (1997)
  8. K. H. Shim, M. C. Paek, K. H. Kim, S. U. Hong, and K. I. Cho, J. Korean Physical Society 34, S350 (1999)
  9. S. U. Hong, M. C. Paek, G. P. Han, Y. J. Sohn, T. Y. Kim, K. I. Cho, K. H. Shim, and S. G. Yoon, Jpn. J. Appl. Phys. 41, 5507 (2002) https://doi.org/10.1143/JJAP.41.5507
  10. M. V. R. Murty, H. A. Atwater, A. J. Kellock, and J. E. E. Baglin, Appl. Phys. Lett. 62, 2566 (1993) https://doi.org/10.1063/1.109298
  11. J. M. E. Harper, J. J. Cuomo, and H. T. G. Hentzell, Appl. Phys. Lett. 43, 547 (1983) https://doi.org/10.1063/1.94414
  12. A. von Engel, Electric Plasmas: Their Nature and Uses (International Publications Service Taylor & Francis Inc., New York, 1983), p.197
  13. H. C. Yang, P. F. Kuo, Y. F. Chen, K. H. Chen, L. C. Chen, Jen-Inn Chyi, Appl. Phys. Lett. 76, 3712 (2000) https://doi.org/10.1063/1.126758