DOI QR코드

DOI QR Code

Introduction to Researches on the Characteristics of Gas Migration Behavior in Bentonite Buffer

벤토나이트 완충재 내 기체 이동의 거동 특성 관련 연구 동향 소개

  • Received : 2021.09.10
  • Accepted : 2021.10.01
  • Published : 2021.10.31

Abstract

Gases such as hydrogen and radon can be generated around the canister in high-level radioactive waste disposal systems due to several reasons including the corrosion of metal materials. When the gas generation rate exceeds the gas diffusion rate in the low-permeability bentonite buffer, the gas phase will form and accumulate in the engineered barrier system. If the gas pressure exceeds the gas entry pressure, gas can migrate into the bentonite buffer, resulting in pathway dilation flow and advective flow. Because a sudden occurrence of dilation flow can cause radionuclide leakage out of the engineered barrier of the radioactive waste disposal system, it is necessary to understand the gas migration behavior in the bentonite buffer to quantitatively evaluate the long-term safety of the engineered barrier. Experimental research investigating the characteristics of gas migration in saturated bentonite and research developing numerical models capable of simulating such behaviors are being actively conducted worldwide. In this technical note, previous gas injection experiments and the numerical models proposed to verify such behaviors are introduced, and the future challenges necessary for the investigation of gas migration are summarized.

고준위방사성폐기물 처분시스템에서는 처분용기 인근에서 용기 금속 물질의 부식 등 여러 이유로 인해 수소, 라돈 등의 기체가 발생할 수 있다. 기체 발생 속도가 투수계수가 낮은 벤토나이트 완충재 공극에서의 기체 확산 속도보다 커질 경우, 형성된 기체가 축적된다. 기체 압력이 증가하여 유입 압력에 도달하면 완충재 내부로 기체의 팽창 흐름 및 이류가 발생하게 된다. 기체의 급격한 팽창 흐름 발생 시 방사성 핵종이 완충재 외부로 유출될 가능성이 있으므로, 처분시설의 설계 과정에서 점토 기반 물질에서의 기체 유동의 영향성 및 공학적방벽의 건전성을 평가하기 위해 기체 이동 현상에 대한 거동 특성을 명확하게 규명할 필요가 있다. 전세계적으로 벤토나이트 완충재 내 기체 이동 현상 규명을 위한 실험적 연구와 이를 모사할 수 있는 전산 수치 모델 개발 연구가 활발히 진행되고 있다. 본 기술보고에서는 현재까지 수행된 기체 주입 시험 및 전산 수치모델 관련 주요연구를 소개하고 향후 기체 이동 현상 규명을 위한 연구 수행 방향에 대해 정리하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원(2021M2E1A1085193)과 고준위폐기물관리차세대혁신기술개발사업의 지원(2021M2E3A2041312)을 받아 수행된 연구사업입니다.

References

  1. Ando, K., Adachi, T., Fujiwara, A., Vomvoris, S., Marshall, P., Lanyon, B., Yamamoto, S., Shimmura, A., 2002, The in-situ gas migration test (GMT) at the Grimsel test site: resaturation phase of silo type repository, Clays In Natural And Engineered Barriers For Radioactive Waste Confinement, December 9-12, 2002, Reims, France.
  2. Alonso, E. E., Gens, A., Josa, A, 1990, A constitutive model for partially saturated soils, Geotechnique, Vol. 40(3), pp. 405-430. https://doi.org/10.1680/geot.1990.40.3.405
  3. Bond, A., Chittenden, N., Thatcher, K., 2018, RWM Coupled Processes Project: First Annual Report for DECOVALEX-2019, Quintessa Report to RWM. QRS-1612D-R1 v1.2. Quintessa Ltd., Henley-on-Thames, UK.
  4. Cuss, R.J., Harrington, J.F., Giot, R., Auvray, C., 2014a, Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone, In: Norris, S., Bruno, J., (eds) Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Geological Society, London, Special Publications, Vol. 400, pp. 507-519. https://doi.org/10.1144/SP400.26
  5. Cuss, R.J., Harrington, J.F., Noy, D.J., 2012, Final Report of FORGE WP4.1.1: The stress path permeameter experiment conducted on Callovo-Oxfordian Claystone, British Geological Survey Commissioned Report, CR/12/140. 116pp. British Geological Survey, Keyworth, Nottingham, UK.
  6. Cuss, R.J., Harrington, J.F., Noy, D.J., Graham, C.C., Sellin, P., 2014b, Evidence of localised gas propagation pathways in a field-scale bentonite engineered barrier system; results from three gas injection tests in the large scale gas injection test (Lasgit), Applied Clay Science, Vol. 102, pp. 81-92. https://doi.org/10.1016/j.clay.2014.10.014
  7. Cuss, R.J., Harrington, J.F., Noy, D.J., Wikman, A., Sellin, P., 2011, Large scale gas injection test (Lasgit): Results from two gas injection tests, Physics and Chemistry of the Earth, Vol. 36, pp. 1729-1742. https://doi.org/10.1016/j.pce.2011.07.022
  8. Dagher, E.E., Nguyen, T.S., Sedano, J.I., 2019, Development of a mathematical model for gas migration (two-phase flow) in natural and engineered barriers for radioactive waste disposal, Geological Society, London, Special Publications, Vol 482(1), pp. 115-148. https://doi.org/10.1144/sp482.14
  9. Damians, I.P., Olivella, S., Gens, A., 2017, Modelling gas flow experiments in Mx80 bentonite, In 9th Workshop on CODE_BRIGHT, Barcelona.
  10. Davies, J.P., Davies, D.K., 2001, Stress-dependent permeability: characterization and modeling, Spe Journal, Vol. 6(2), pp. 224-235. https://doi.org/10.2118/71750-PA
  11. Donohew, A.T,, Horseman, S.T., Harrington, J.F., 2000, Gas entry into unconfined clay pastes at water contents between the liquid and plastic limits, pp. 369-394 in: Environmental Mineralogy-Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management (J.D. Cotter-Howells, L.S. Campbell, E. Valsami-Jones, M. Batchelder, editors), Mineralogical Society Special Publication, 9. Mineralogical Society of Great Britain and Ireland, London, UK.
  12. Fall, M., Nasir, O., Nguyen, T.S., 2014, A coupled hydro-mechanical model for simulation of gas migration in host sedimentary rocks for nuclear waste repositories, Engineering Geology, Vol. 176, pp. 24-44. https://doi.org/10.1016/j.enggeo.2014.04.003
  13. Fredlund, D.G., Xing, A., Huang, S., 1994, Predicting the permeability function for unsaturated soils using the soil-water characteristic curve, Canadian Geotechnical Journal, Vol. 31(4), pp. 533-546. https://doi.org/10.1139/t94-062
  14. Galle, C., 1998, Migration des gaz et pression de rupture dans une argile compactee destinee a la barriere ouvragee d'un stockage profound, Bulletin de la Societe Geologique de France, Vol. 169, pp. 675-680.
  15. Galle, C., 2000, Gas breakthrough pressure in compacted Fo-Ca clay and interfacial gas overpressure in waste disposal context, Applied Clay Science, Vol. 17, pp. 85-97. https://doi.org/10.1016/S0169-1317(00)00007-7
  16. Galle, C., Tanai, K., 1998, Evaluation of gas transport properties of backfill materials for waste disposal: H2 migration experiments in compacted Fo-Ca Clay, Clays and Clay Minerals, Vol. 46, pp. 498-508. https://doi.org/10.1346/CCMN.1998.0460503
  17. Gens, A., 1995, Constitutive laws, In Modern issues in non-saturated soils, pp. 129-158, Springer, Vienna.
  18. Gerard, P., Harrington, J., Charlier, R., Collin, F., 2014, Modelling of localised gas preferential pathways in claystone, International Journal of Rock Mechanics and Mining Sciences, Vol. 67, pp. 104-114. https://doi.org/10.1016/j.ijrmms.2014.01.009
  19. Graham, J., Halayko, K.G., Hume, H., Kirkham, T., Gray, M., Oscarson, D., 2002, A capilliarity-advective model for gas break-through in clays, Engineering Geology, Vol. 64, pp. 273-286. https://doi.org/10.1016/S0013-7952(01)00106-5
  20. Graham, C.C., Harrington, J.F., 2014, Final Report of FORGE 3.2.1: Key Gas Migration Processes in Compact Bentonite, FORGE Report D3.33. British Geological Survey, Keyworth, Nottingham, UK.
  21. Graham, C.C., Harrington, J.F., Cuss, R.J., Sellin, P., 2012, Gas migration experiments in bentonite: implications for numerical modelling, Mineralogical Magazine, Vol. 76(8), pp. 3279-3292. https://doi.org/10.1180/minmag.2012.076.8.41
  22. Guo, G., Fall, M., 2018, Modelling of dilatancy-controlled gas flow in saturated bentonite with double porosity and double effective stress concepts, Engineering Geology, Vol. 243, pp. 253-271. https://doi.org/10.1016/j.enggeo.2018.07.002
  23. Guo, G., Fall, M., 2021, Advances in modelling of hydro-mechanical processes in gas migration within saturated bentonite: A state-of-art review, Engineering Geology, 106123.
  24. Hallett, P.D., Newson, T.A., 2005, Describing soil crack formation using elastic-plastic fracture mechanics, European Journal of Soil Science, Vol. 56(1), pp. 31-38. https://doi.org/10.1111/j.1365-2389.2004.00652.x
  25. Harrington, J.F., 2016, Task A: Stage 1A: 1D flow through saturated bentonite under constant volume boundary conditions, British Geological Survey, Pers. comm. 05/10/2016.
  26. Harrington, J.F., De Lavaissiere, R., Noy, D.J., Cuss, R.J., Talandier, J., 2012, Gas flow in Callovo-Oxfordian claystone (COx): results from laboratory and field-scale measurements, Mineralogical Magazine, Vol. 76, pp. 3303-3318. https://doi.org/10.1180/minmag.2012.076.8.43
  27. Harrington, J.F., Graham, C.C., Cuss, R.J., Norris, S., 2017, Gas network development in a precompacted bentonite experiment: Evidence of generation and evolution, Applied Clay Science, Vol. 147, pp. 80-89. https://doi.org/10.1016/j.clay.2017.07.005
  28. Harrington, J.F., Horseman, S.T., 2003, Gas Migration in KBS-3 Buffer Bentonite: Sensitivity of Test Parameters to Experimental Boundary Conditions, SKB Technical Report No. TR-03-02. Svensk Karnbranslehantering AB, Stockholm, Sweden.
  29. Harrington, J.F., Horseman, S.T., 1999, Gas transport properties of clays and mudrocks, In: Aplin, A.C., Fleet, A.J., Macquaker, J.H., (eds) Muds and Mudstones: Physical and Fluid Flow Properties, Geological Society of London, London, Special Publications, Vol. 158, pp. 107-124. https://doi.org/10.1144/GSL.SP.1999.158.01.09
  30. Harrington, J.F., Horseman, S.T., 2003, Gas Migration in KBS-3 Buffer Bentonite: Sensitivity of Test Parameters to Experimental Boundary Conditions, SKB Technical Report No. TR-03-02. Svensk Karnbranslehantering AB, Stockholm, Sweden.
  31. Hoch, A.R., Cliffe, K.A., Swift, B.T., Rodwell, W.R., 2004, Modelling Gas Migrationin Compacted Bentonite: GAMBIT Club Phase 3, Final Report, POSIVA, Olkiluoto, Finland.
  32. Horseman, S.T., Harrington, J.F., Sellin, P., 1996, Gas Migration in MX80 Buffer Bentonite, In: Symposium on the Scientific Basis for Nuclear Waste Management XX (Boston), Materials Research Society, 465, pp. 1003-1010.
  33. Horseman, S.T., Harrington, J.F., Sellin, P., 1999, Gas migration in clay barriers, Engineering Geology, Vol. 54, pp. 139-149. https://doi.org/10.1016/S0013-7952(99)00069-1
  34. Horseman, S.T., Harrington, J.F., Sellin, P., 2003, Water and gas movement in Mx80 bentonite buffer clay, MRS Online Proceedings Library (OPL), pp. 807.
  35. Horseman, S.T., Harrington, J.F., Sellin, P., 2004, Water and Gas Movement in Mx80 Bentonite Buffer Clay, In: Symposium on the Scientific Basis for Nuclear Waste Management XXVII (Kalmar), Materials Research Society, Vol. 807, pp. 715-720.
  36. Juanes, R., Spiteri, E.J., Orr Jr, F.M., Blunt, M.J., 2006, Impact of relative permeability hysteresis on geological CO2 storage, Water resources research, Vol. 42(12).
  37. KACHANOV, L.M., 1958, Time of the rupture process under creep conditions, Izy Akad. Nank SSR Otd Tech Nauk, Vol. 8, pp. 26-31.
  38. Kawai, T., 1978, New discrete models and their application to seismic response analysis of structures, Nuclear engineering and design, Vol. 48(1), pp. 207-229. https://doi.org/10.1016/0029-5493(78)90217-0
  39. Killough, J.E., 1976, Reservoir simulation with history-dependent saturation functions, Society of Petroleum Engineers Journal, Vol. 16(1), pp. 37-48. https://doi.org/10.2118/5106-PA
  40. Kim, K., Rutqvist, J., Harrington, J.F., Tamayo-Mas, E., Birkholzer, J.T., 2021, Discrete dilatant pathway modeling of gas migration through compacted bentonite clay, International Journal of Rock Mechanics and Mining Sciences, Vol. 137, pp. 104569. https://doi.org/10.1016/j.ijrmms.2020.104569
  41. Land, C.S., 1968, Calculation of imbibition relative permeability for two-and three-phase flow from rock properties, Society of Petroleum Engineers Journal, Vol. 8(2), pp. 149-156. https://doi.org/10.2118/1942-PA
  42. Lee, C., Choi, H.J., Kim, G.Y., 2020a, Numerical modeling of coupled thermo-hydro-mechanical behavior of mx80 bentonite pellets, Tunnel and Underground Space, Vol. 30(5), pp. 446-461. https://doi.org/10.7474/TUS.2020.30.5.446
  43. Lee, C., Lee, J., Kim, G.Y., 2020b, Numerical analysis of FEBEX at Grimsel Test Site in Switzerland, Tunnel and Underground Space, Vol 30(4), pp. 359-381. https://doi.org/10.7474/TUS.2020.30.4.359
  44. Lee, C., Lee, J., Kim, M., Kim, G.Y., 2020c, Implementation of Barcelona Basic Model into TOUGH2-MP/FLAC3D, Tunnel and Underground Space, Vol. 30(1), pp. 39-62. https://doi.org/10.7474/TUS.2020.30.1.039
  45. Lee, C., Yoon, S., Lee, J., Kim, G.Y., 2019, Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils, Tunnel and Underground Space, Vol. 29(1), pp. 38-51. https://doi.org/10.7474/TUS.2019.29.1.038
  46. Lee, J., Kim, I., Ju, H., Choi, H., Cho, D., 2020d, Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea, Journal of Nuclear Fuel Cycle and Waste Technology, Vol. 18(S), pp. 1-19.
  47. Lee, J., Lee, C., Kim, G.Y., 2020e, Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A, Tunnel and Underground Space, Vol. 30(3), pp. 382-393.
  48. Lee, J., Lee, C., Kim, G.Y., 2020f, Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A, Tunnel and Underground Space, Vol. 29(4), pp. 262-279.
  49. Marschall, P., Horseman, S.T., Gimmi, T., 2005, Characterisation of gas transport properties of the opalinus clay, a potential host rock formation for radioactive waste disposal, Oil and Gas Science and Technology - Rev. IFP, Vol. 60, pp. 121-139. https://doi.org/10.2516/ogst:2005008
  50. Mazars, J., 1984, Application de la mecanique de l'endommagement au comportement non lineaire et a la rupture du beton de structure, THESE DE DOCTEUR ES SCIENCES PRESENTEE A L'UNIVERSITE PIERRE ET MARIE CURIE-PARIS 6.
  51. Mazars, J., 1986, A description of micro-and macroscale damage of concrete structures, Engineering Fracture Mechanics, Vol. 25(5-6), pp. 729-737. https://doi.org/10.1016/0013-7944(86)90036-6
  52. Mazars, J., Pijaudier-Cabot, G., 1989, Continuum damage theory-application to concrete, Journal of engineering mechanics, Vol. 115(2), pp. 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
  53. Meschke, G., Grasberger, S., 2003, Numerical modeling of coupled hydromechanical degradation of cementitious materials, Journal of engineering mechanics, Vol. 129(4), pp. 383-392. https://doi.org/10.1061/(asce)0733-9399(2003)129:4(383)
  54. Mualem, Y., 1976, A new model for predicting the hydraulic conductivity of unsaturated porous media, Water resources research, Vol. 12(3), pp. 513-522. https://doi.org/10.1029/WR012i003p00513
  55. Mualem, Y., 1978, Hydraulic conductivity of unsaturated porous media: generalized macroscopic approach, Water Resources Research, Vol. 14(2), pp. 325-334. https://doi.org/10.1029/WR014i002p00325
  56. Nash, P.J., Swift, B.T., Goodfield, M., Rodwell, W.R., 1998, Modelling gas migration in compacted bentonite, Posiva Report, pp. 98-08.
  57. Nguyen, T.S., Le, A.D., 2015, Simultaneous gas and water flow in a damage-susceptible bedded argillaceous rock, Canadian Geotechnical Journal, Vol. 52(1), pp. 18-32. https://doi.org/10.1139/cgj-2013-0457
  58. Olivella, S., Alonso, E.E., 2008, Gas flow through clay barriers, Geotechnique, Vol. 58(3), pp. 157-176. https://doi.org/10.1680/geot.2008.58.3.157
  59. Pusch, R., Forsberg, T., 1983, Gas Migration through Bentonite Clay, SKB Technical Report 83-71, Svensk Karnbranslehantering AB, Stockholm, Sweden.
  60. Pusch, R., Ranhagen, L., Nilsson, K., 1985, Gas Migration through MX-80 Bentonite, Nagra Technical Report NTB 85-36, Nagra, Wettingen, Switzerland.
  61. Rutqvist, J., Tsang, C.F. (2002). A study of caprock hydromechanical changes associated with CO 2-injection into a brine formation. Environmental Geology, 42(2-3), 296-305. https://doi.org/10.1007/s00254-001-0499-2
  62. Rutqvist, J., Ijiri, Y., Yamamoto, H. (2011). Implementation of the Barcelona Basic Model into TOUGH-FLAC for simulations of the geomechanical behavior of unsaturated soils. Computers & Geosciences, 37(6), 751-762. https://doi.org/10.1016/j.cageo.2010.10.011
  63. Rutqvist, J., Kim, K., Xu, H., Guglielmi, Y., Birkholzer, J. (2018). Investigation of Couple d Processes in Argillite Rock: FY18 Progress. Prepared for US Department of Energy. Spent Fuel and Waste Disposition. LBNL, 2001168.
  64. Sedighi, M., Thomas, H.R., Al Masum, S., Vardon, P.J., Nicholson, D., Chen, Q. (2015). Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer. Geological Society, London, Special Publications, 415(1), 189-201. https://doi.org/10.1144/SP415.12
  65. Sellin, P., Harrington, J.F., 2006, Large-Scale Gas Injection Test (Lasgit) Current Status, American Nuclear Society High Level Waste Meeting, Las Vegas.
  66. Swift, B.T., Hoch, A.R., Rodwell, W.R., 2001, Modelling gas migration in compacted bentonite: GAMBIT Club Phase 2, Final report (No. POSIVA-01-02), Posiva Oy.
  67. Tamayo-Mas, E., Harrington, J.F., Shao, H., Dagher, E., Lee, J., Kim, K., Rutqvist, J., Lai, S., Chittenden, N., Wang, Y., Damians, I., Olivella, S., 2018, Numerical Modelling of Gas Flow in a Compact Clay Barrier for DECOVALEX-2019, Paper presented at the 2nd International Discrete Fracture Network Engineering Conference, 20-21, June, Seattle, Washington, USA.
  68. Tamayo-Mas, E., Harrington, J.F., 2020, DECOVALEX-2019 Project: Task A Final Report.
  69. Tamayo-Mas, E., Harrington, J.F., Bruning, T., Shao, H., Dagher, E.E., Lee, J., Rutqvist, J., Kolditz, O., Lai, S.H., Chittenden, N., Wang, Y., Damians, I.P., Olivella, S., 2021, Modelling advective gas flow in compact bentonite: Lessons learnt from different numerical approaches, International Journal of Rock Mechanics and Mining Sciences, Vol. 139, pp. 104580. https://doi.org/10.1016/j.ijrmms.2020.104580
  70. Tanai, K., Kanno, T., Galle, C., 1996, Experimental study of gas permeabilities and breakthrough pressures in clays, MRS Symposia Proceedings, 465, 1003-1010.
  71. Tang, C.A., Tham, L.G., Lee, P.K.K., Yang, T.H., Li, L.C., 2002, Coupled analysis of flow, stress and damage (FSD) in rock failure, International Journal of Rock Mechanics and Mining Sciences, Vol. 39(4), pp. 477-489. https://doi.org/10.1016/S1365-1609(02)00023-0
  72. The Grimsel Test Site in Switzerland, accessed October 1, 2021. available from [grimsel.com/gts-projects/]
  73. Van Genuchten, M.T., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil science society of America journal, Vol. 44(5), pp. 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  74. Volckaert, G., Ortiz, L., De Canniere, P., Put, M., Horseman, S.T., Harrington, J.F., Fioravante, V., Impey, M., 1995, MEGAS - Modelling and Experiments on Gas Migration in Repository Host Rocks: Final Report Phase 1, European Commission Report EUR 16235 EN.
  75. Vomvoris, S., Lanyon, B., Marschall, P., Ando., K., Adachi, T., Fujiwara, A., Yamamoto, S., 2003, Sand/bentonite barriers and gas migration: the GMT large-scale in-situ test in the Grimsel Test Site, Materials Research Society Proceedings on Scientific Basis for Nuclear Waste Management XXVI, Vol. 757, Materials Research Society, Warrendale, Pennsylvania.
  76. Xu, W. J., Shao, H., Hesser, J., Wang, W., Schuster, K., Kolditz, O., 2013, Coupled multiphase flow and elasto-plastic modelling of in-situ gas injection experiments in saturated claystone (Mont Terri Rock Laboratory), Engineering Geology, Vol. 157, pp. pp. 55-68. https://doi.org/10.1016/j.enggeo.2013.02.005
  77. Ye, W. M., Xu, L., Chen, B., Chen, Y.G., Ye, B., Cui, Y.J., 2014, An approach based on two-phase flow phenomenon for modeling gas migration in saturated compacted bentonite, Engineering geology, Vol. 169, pp. 124-132. https://doi.org/10.1016/j.enggeo.2013.12.001