DOI QR코드

DOI QR Code

Structural Change of Supersonic Jet Due to Liquid Injection in Supersonic Backward Facing Step Flow

초음속 후향 계단 유동에서 액체 분사로 인한 초음속 제트의 구조 변화

  • Ahn, Sang-Hoon (Department of Aerospace Engineering, Korea Aerospace University) ;
  • Han, Doo-Hee (Department of Aerospace Engineering, Korea Aerospace University) ;
  • Choi, Han-Young (Department of Aerospace Engineering, Korea Aerospace University) ;
  • Seo, Seong-Hyeon (Department of Mechanical Engineering, Hanbat National University) ;
  • Sung, Hong-Gye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 안상훈 (한국항공대학교, 항공우주 및 기계공학과) ;
  • 한두희 (한국항공대학교, 항공우주 및 기계공학과) ;
  • 최한영 (한국항공대학교, 항공우주 및 기계공학과) ;
  • 서성현 (국립한밭대학교, 기계공학과) ;
  • 성홍계 (한국항공대학교, 항공우주 및 기계공학부)
  • Received : 2019.09.29
  • Accepted : 2019.11.24
  • Published : 2019.12.31

Abstract

The experiment on the liquid jet in crossflow in supersonic BFS (backward-facing step) flow was conducted to investigate the mixing characteristics. The working fluids are nitrogen and water. The shadow graph technique was used to visualize the flow field. Images captured by the high-speed camera were applied to analyze the flow phenomena. The liquid jet was injected at the re-circulation zone created by the supersonic jet flow. Experimental conditions are defined based on the pressure of the nitrogen gas chamber and pressurized liquid tank. In respective cases, the penetration depth of liquid jet and location of the Mach disc were observed to be proportional to the momentum ratio of gas and liquid jets.

초음속 유동이 흐르는 후향 계단에서 액체 제트가 수직으로 분사되는 유동의 혼합 특성에 대한 실험적 연구를 수행하였다. 작동 유체는 질소와 물을 사용하였다. 쉐도우그래프 기법을 사용하여 유동을 가시화하였으며, 초고속 카메라로 촬영된 영상은 시간 평균화 처리를 통해 분석에 사용하였다. 액체 제트의 주입구는 초음속 질소가스 유동에 의해 생성되는 재순환 영역 내부에 위치하며 유동방향에 수직하게 분사된다. 실험 조건은 질소가스 챔버와 액체 가압탱크의 압력에 따라 나누었다. 각 실험 조건에서 분사된 액체 제트의 침투 깊이와 마하 디스크의 생성 위치의 변화를 관찰하였으며, 운동량비에 따른 유동의 구조 변화에 대해 고찰하였다.

Keywords

References

  1. A.S. Nejad and J.A. Schetz, "Effects of Properties and Location in the Plume on Droplet Diameter for Injection in a Supersonic Stream", AIAA Journal, vol. 21, no. 7, pp. 956-961, 1983. https://doi.org/10.2514/3.8183
  2. J. Beloki Perurena, C.O. Asma, R. Theunissem and O. Chazot, "Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow", Experiments in Fluids, vol. 46, no. 3, pp. 403-417, 2009. https://doi.org/10.1007/s00348-008-0566-5
  3. X. Fan, J. Wang, F. Zhao, J. Li and T. Yanf, "Eulerian-Lagrangian method for liquid jet atomization in supersonic crossflow using statistical injection model", Advances in Mechanical Engineering, vol. 10, no. 2, pp. 1-13, 2018.
  4. R. Hu, Q. Li, C. Li and C. Li, "Effects of an accompanied gas jet on transverse liquid injection in a supersonic crossflow", Acta Astronautica, vol. 159, pp. 440-451, 2019. https://doi.org/10.1016/j.actaastro.2019.01.040
  5. J. Hu, J. Chang, W. Bao, Q. Yang and J. Wen, "Experimental study of a flush wall scramjet combustor equipped with strut/wall fuel injection", Acta Astronautica, vol. 104, pp. 84-90, 2014. https://doi.org/10.1016/j.actaastro.2014.07.012
  6. H.M. Kim and J.S. Kim, "Effect of Heat Transfer and Phase Change of Coolant on the Performance of Mixed-gas Ejection System", Journal of the Korean Society of Propulsion Engineers, vol. 22, no. 6, pp. 84-93, 2018. https://doi.org/10.6108/KSPE.2018.22.6.084
  7. High speed camera specification, https://optronis.com/wp-content/uploads/2018/09/CR3000X2_de_F.pdf
  8. National Instrument CompactDAQ specification, http://www.ni.com/pdf/manuals/374046a.pdf
  9. National Instrument LabVIEW manual, http://www.ni.com/pdf/manuals/320999e.pdf