Browse > Article

Plasma Effects on the Growth of $In_{0.2}Ga_{0.8}N/GaN$ Heterostructures using Molecular Beam Epitaxy  

Shim Kyu-Hwan (Semiconductor Science Technology Department (Graduate), Chonbuk National University)
Publication Information
Journal of the Korean Vacuum Society / v.14, no.2, 2005 , pp. 84-90 More about this Journal
Abstract
The influence of plasma parameters on the growth of $In_{0.2}Ga_{0.8}N/GaN$ heterostructures has been investigated using plasma-assisted molecular beam epitaxy. Since plasma ejects plenty of energetic particles with different energy levels and flux density at various rf power levels, plasma modulated both growth rate and optical properties significantly. For instance, surface roughness and the emission spectrum of photoluminescence were degraded at low and high rf power. According to sharp interfaces between epitaxial films and strong peaks observed from photoluminescence spectra, our experimental setup presented optimal operation range of rf powers at around 400W. The phenomena could be explained by the presence of energetic particles modulating the rate of plasma stimulated desorption and surface diffusion, and energetic particles exceeding critical value resulted in the incorporation of defects at subsurface. The optimal rf power regime increased by 100W for $In_{0.2}Ga_{0.8}N/GaN$ growth in comparison with GaN. The effects of rf power were discussed in conjunction with kinetic processes being stimulated by energetic particles.
Keywords
MBE; InGaN; Plasma; Epitaxial Growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Barnett, C. H. Choi, and R. Kaspi, Mat. Res. Soc. Symp. Proc., ISBN 1-55899-133-6, 201 (1991)
2 M. V. R. Murty, H. A. Atwater, A. J. Kellock, and J. E. E. Baglin, Appl. Phys. Lett. 62, 2566 (1993)   DOI   ScienceOn
3 J. M. E. Harper, J. J. Cuomo, and H. T. G. Hentzell, Appl. Phys. Lett. 43, 547 (1983)   DOI
4 K. H. Shim, M. C. Paek, K. H. Kim, S. U. Hong, and K. I. Cho, J. Korean Physical Society 34, S350 (1999)
5 S. U. Hong, M. C. Paek, G. P. Han, Y. J. Sohn, T. Y. Kim, K. I. Cho, K. H. Shim, and S. G. Yoon, Jpn. J. Appl. Phys. 41, 5507 (2002)   DOI
6 H. Fuji, C. Kisielowski, J. Krueger, M. S. Leung, R. Klockenbrink, M. Rubin, and E. R. Weber, Mat. Res. Soc. Symp. Proc. 449, 227 (1997)
7 M. S. Shur, R. Gaska, A. Khan, and G. Simin, Devices, Circuits and Systems, Proceedings of the Fourth IEEE International Caracs Conference, D051-1-D051-8 (2002)
8 A. von Engel, Electric Plasmas: Their Nature and Uses (International Publications Service Taylor & Francis Inc., New York, 1983), p.197
9 C. Kim, I. K Robinson, J. M. Myoung, K. H. Shim, and K. Kim, J. Appl. Phys. 85, 4040 (1999)   DOI   ScienceOn
10 S. J Pearton, C. R. Abernathy, B. P. Gila, F. Ren, J. M. Zavada, and S. N. G. Chu, Semiconductor Device Research Symposium, 10-12 Dec. 302 (2003)
11 H. C. Yang, P. F. Kuo, Y. F. Chen, K. H. Chen, L. C. Chen, Jen-Inn Chyi, Appl. Phys. Lett. 76, 3712 (2000)   DOI   ScienceOn
12 M. S. H. Leung, R. Klockenbrink, C. Kisielowski, H. Fujii, J. Kruger, G. S. Sudkier , A. Anders, Z. Liliental-Weber, M. Rudin, and E.R. Weber, Mater. Res. Soc. Symp. Proc. 449, 221 (1997)
13 C. J. Tsai, H. A. Atwater, and T. Vreeland, Appl. Phys. Lett. 57, 2305 (1990)   DOI